Compare commits

...

24 Commits

Author SHA1 Message Date
6a09ecf33d Improve gen_access_expr with dispatch 2023-10-12 15:58:39 +02:00
4dcb616606 Use the scheduling information in the execution 2023-10-12 15:15:36 +02:00
9b28601f18 Add device info to nodes during scheduling 2023-10-12 00:29:48 +02:00
3267daadfd Actually fix the rare execution error this time 2023-10-10 21:49:31 +02:00
140a954d01 Add scheduler interface 2023-10-10 14:12:42 +02:00
a86901e425 Fix occasional execution error 2023-10-04 17:32:23 +02:00
0f50b59933 input/AB->ABBBBBBBBB.txt: convert to Git LFS 2023-10-04 11:48:55 +02:00
cbfed20b82 WIP 2023-10-04 11:05:49 +02:00
f9e60a7b5e Update docs 2023-10-03 18:00:25 +02:00
314330f00f Add cache strategy information to devices 2023-10-03 17:13:53 +02:00
dd01a5e691 Reimplement same code generation through new cache strategy interface 2023-10-03 16:47:14 +02:00
37d645cb4e WIP Adding machine/device info and caching strategies 2023-09-29 18:02:57 +02:00
afb6af44ca Add more notebooks 2023-09-29 01:12:43 +02:00
bef017130b Add notebook abc model showcase, add some pretty print functions 2023-09-28 19:42:19 +02:00
7dd9fedf2e Refactor model into an interface and remove any ABC Model specific code from src/code_gen/. Also generate functions instead of direct code evaluation in execute() 2023-09-28 17:59:17 +02:00
a69dd6018e WIP 2023-09-28 00:48:57 +02:00
4b44eb5286 Add number of children information to sum tasks 2023-09-27 16:16:33 +02:00
Anton Reinhard
24ade323f0 Add tests for AB->ABBB execution and fix errors 2023-09-26 18:30:37 +02:00
Anton Reinhard
95f92f080c Fix execution with fusion 2023-09-26 16:52:50 +02:00
Anton Reinhard
cc05cae1cd Fix abc test value 2023-09-26 10:23:30 +02:00
Anton Reinhard
c88898a502 WIP 2023-09-25 18:49:44 +02:00
Anton Reinhard
0d8d824540 Fix Format check 2023-09-25 16:40:01 +02:00
c428613c80 Make FusedComputeTasks usable in execution 2023-09-25 16:11:15 +02:00
f8a591991c Start adding device and machine info 2023-09-17 23:06:14 +02:00
72 changed files with 3397 additions and 987 deletions

View File

@ -1,5 +1,5 @@
indent = 4
margin = 80
margin = 120
always_for_in = true
for_in_replacement = "in"
whitespace_typedefs = true

View File

@ -108,7 +108,7 @@ jobs:
- name: Format check
run: |
julia --project=./ -e 'using JuliaFormatter; format(".", verbose=true)'
julia --project=./ -e 'using JuliaFormatter; format(".", verbose=true, ignore=[".julia/*"])'
julia --project=./ -e '
out = Cmd(`git diff --name-only`) |> read |> String
if out == ""

2
.gitignore vendored
View File

@ -26,3 +26,5 @@ Manifest.toml
# vscode workspace directory
.vscode
.julia
**/.ipynb_checkpoints/

View File

@ -5,9 +5,15 @@ version = "0.1.0"
[deps]
AccurateArithmetic = "22286c92-06ac-501d-9306-4abd417d9753"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
NumaAllocators = "21436f30-1b4a-4f08-87af-e26101bb5379"
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Roots = "f2b01f46-fcfa-551c-844a-d8ac1e96c665"
UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[extras]

View File

@ -42,7 +42,7 @@ Problems:
- Lots of testing required because mistakes will propagate and multiply.
## Other TODOs
- Reduce memory footprint of the graph, are the UUIDs too large?
- Reduce memory footprint of the graph
- Memory layout of Nodes? They should lie linearly in memory, right now probably on heap?
- Add scaling functions
@ -53,7 +53,7 @@ For graphs AB->AB^n:
- Number of ComputeTaskS2 should always be (n+1)!
- Number of ComputeTaskU should always be (n+3)
Times are from my home machine: AMD Ryzen 7900X3D, 64GB DDR5 RAM @ 6000MHz
Times are from my home machine: AMD Ryzen 7900X3D, 64GB DDR5 RAM @ 6000MHz (not necessarily up to date, check Jupyter Notebooks in `notebooks/` instead)
```
$ julia --project examples/import_bench.jl

View File

@ -27,6 +27,7 @@ makedocs(
"Diff" => "lib/internals/diff.md",
"Utility" => "lib/internals/utility.md",
"Code Generation" => "lib/internals/code_gen.md",
"Devices" => "lib/internals/devices.md",
],
"Contribution" => "contribution.md",
],

75
docs/src/flowchart.drawio Normal file
View File

@ -0,0 +1,75 @@
<mxfile host="Electron" modified="2023-09-17T13:34:45.840Z" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/21.6.1 Chrome/114.0.5735.134 Electron/25.6.0 Safari/537.36" etag="e0c8qLevhaP_q_R2fyC9" version="21.6.1" type="device">
<diagram name="Page-1" id="Vy0cA1nkMPfy-3cC5ahA">
<mxGraphModel dx="1185" dy="707" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="500" pageHeight="900" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="yG8qeggDCLqQ8GwY7ugi-5" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-1" target="yG8qeggDCLqQ8GwY7ugi-2">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-1" value="Process Generator Script" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="120" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-11" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-2" target="yG8qeggDCLqQ8GwY7ugi-3">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-2" value="Process Parser" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="220" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-8" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.25;exitDx=0;exitDy=0;entryX=0;entryY=0.25;entryDx=0;entryDy=0;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-3" target="yG8qeggDCLqQ8GwY7ugi-6">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-14" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-3" target="yG8qeggDCLqQ8GwY7ugi-12">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-3" value="Optimizer" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="320" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-9" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=1;entryY=0.75;entryDx=0;entryDy=0;exitX=0;exitY=0.75;exitDx=0;exitDy=0;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-6" target="yG8qeggDCLqQ8GwY7ugi-3">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-6" value="Fast Cost Estimator&lt;br&gt;(Global Metrics)" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="340" y="320" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-15" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-12" target="yG8qeggDCLqQ8GwY7ugi-13">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="80" y="450" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-12" value="Scheduler" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="420" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-16" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-13" target="yG8qeggDCLqQ8GwY7ugi-3">
<mxGeometry relative="1" as="geometry">
<mxPoint x="120" y="380" as="targetPoint" />
<Array as="points">
<mxPoint x="80" y="350" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-19" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-12" target="yG8qeggDCLqQ8GwY7ugi-18">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="240" y="500" />
<mxPoint x="240" y="500" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-13" value="Accurate Cost Estimator&lt;br&gt;(Machine Specific)" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="20" y="370" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-21" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;shadow=1;" edge="1" parent="1" source="yG8qeggDCLqQ8GwY7ugi-18" target="yG8qeggDCLqQ8GwY7ugi-20">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-18" value="Code Generator" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="520" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="yG8qeggDCLqQ8GwY7ugi-20" value="Executor" style="rounded=1;whiteSpace=wrap;html=1;shadow=1;" vertex="1" parent="1">
<mxGeometry x="180" y="620" width="120" height="60" as="geometry" />
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

View File

@ -0,0 +1,59 @@
# Devices
## Interface
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/interface.jl"]
Order = [:type, :constant, :function]
```
## Detect
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/detect.jl"]
Order = [:function]
```
## Measure
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/measure.jl"]
Order = [:function]
```
## Implementations
### General
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/impl.jl"]
Order = [:type, :function]
```
### NUMA
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/numa/impl.jl"]
Order = [:type, :function]
```
### CUDA
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/cuda/impl.jl"]
Order = [:type, :function]
```
### ROCm
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/rocm/impl.jl"]
Order = [:type, :function]
```
### oneAPI
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["devices/oneapi/impl.jl"]
Order = [:type, :function]
```

View File

@ -1,5 +1,21 @@
# Models
## Interface
The interface that has to be implemented for a model to be usable is defined in `src/models/interface.jl`.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/interface.jl"]
Order = [:type, :constant, :function]
```
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/print.jl"]
Order = [:function]
```
## ABC-Model
### Types
@ -44,6 +60,13 @@ Pages = ["models/abc/compute.jl"]
Order = [:function]
```
### Print
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/abc/print.jl"]
Order = [:function]
```
## QED-Model
*To be added*

View File

@ -0,0 +1,15 @@
# Scheduler
## Interface
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["scheduler/interface.jl"]
Order = [:type, :function]
```
## Greedy
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["scheduler/greedy.jl"]
Order = [:type, :function]
```

View File

@ -21,6 +21,13 @@ Pages = ["task/compare.jl"]
Order = [:function]
```
## Compute
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["task/compute.jl"]
Order = [:function]
```
## Properties
```@autodocs
Modules = [MetagraphOptimization]

View File

@ -1,3 +1,7 @@
# Manual
This will become a manual.
## Jupyter Notebooks
In the `notebooks` directory are notebooks containing some examples of the usage of this repository.
- `abc_model_showcase`: A simple showcase of the intended usage of the ABC Model implementation.

View File

@ -13,16 +13,15 @@ function bench_txt(filepath::String, bench::Bool = true)
return
end
model = ABCModel()
println(name, ":")
g = parse_abc(filepath)
g = parse_dag(filepath, model)
print(g)
println(
" Graph size in memory: ",
bytes_to_human_readable(MetagraphOptimization.mem(g)),
)
println(" Graph size in memory: ", bytes_to_human_readable(MetagraphOptimization.mem(g)))
if (bench)
@btime parse_abc($filepath)
@btime parse_dag($filepath, $model)
end
println(" Get Operations: ")

View File

@ -12,7 +12,7 @@ function gen_plot(filepath)
return
end
g = parse_abc(filepath)
g = parse_dag(filepath, ABCModel())
Random.seed!(1)
@ -48,23 +48,10 @@ function gen_plot(filepath)
println("\rDone.")
plot(
[x[1], x[2]],
[y[1], y[2]],
linestyle = :solid,
linewidth = 1,
color = :red,
legend = false,
)
plot([x[1], x[2]], [y[1], y[2]], linestyle = :solid, linewidth = 1, color = :red, legend = false)
# Create lines connecting the reference point to each data point
for i in 3:length(x)
plot!(
[x[i - 1], x[i]],
[y[i - 1], y[i]],
linestyle = :solid,
linewidth = 1,
color = :red,
)
plot!([x[i - 1], x[i]], [y[i - 1], y[i]], linestyle = :solid, linewidth = 1, color = :red)
end
return gui()

View File

@ -12,7 +12,7 @@ function gen_plot(filepath)
return
end
g = parse_abc(filepath)
g = parse_dag(filepath, ABCModel())
Random.seed!(1)
@ -60,14 +60,7 @@ function gen_plot(filepath)
push!(y, props.computeEffort)
pop_operation!(g)
push!(
names,
"NF: (" *
string(props.data) *
", " *
string(props.computeEffort) *
")",
)
push!(names, "NF: (" * string(props.data) * ", " * string(props.computeEffort) * ")")
end
for op in opt.nodeReductions
push_operation!(g, op)
@ -76,14 +69,7 @@ function gen_plot(filepath)
push!(y, props.computeEffort)
pop_operation!(g)
push!(
names,
"NR: (" *
string(props.data) *
", " *
string(props.computeEffort) *
")",
)
push!(names, "NR: (" * string(props.data) * ", " * string(props.computeEffort) * ")")
end
for op in opt.nodeSplits
push_operation!(g, op)
@ -92,33 +78,13 @@ function gen_plot(filepath)
push!(y, props.computeEffort)
pop_operation!(g)
push!(
names,
"NS: (" *
string(props.data) *
", " *
string(props.computeEffort) *
")",
)
push!(names, "NS: (" * string(props.data) * ", " * string(props.computeEffort) * ")")
end
plot(
[x0, x[1]],
[y0, y[1]],
linestyle = :solid,
linewidth = 1,
color = :red,
legend = false,
)
plot([x0, x[1]], [y0, y[1]], linestyle = :solid, linewidth = 1, color = :red, legend = false)
# Create lines connecting the reference point to each data point
for i in 2:length(x)
plot!(
[x0, x[i]],
[y0, y[i]],
linestyle = :solid,
linewidth = 1,
color = :red,
)
plot!([x0, x[i]], [y0, y[i]], linestyle = :solid, linewidth = 1, color = :red)
end
#scatter!(x, y, label=names)

View File

@ -1,6 +1,6 @@
function test_random_walk(g::DAG, n::Int64)
# the purpose here is to do "random" operations and reverse them again and validate that the graph stays the same and doesn't diverge
function random_walk!(g::DAG, n::Int64)
# the purpose here is to do "random" operations on the graph to simulate an optimizer
reset_graph!(g)
properties = get_properties(g)
@ -32,7 +32,7 @@ function test_random_walk(g::DAG, n::Int64)
end
end
return reset_graph!(g)
return nothing
end
function reduce_all!(g::DAG)

Binary file not shown.

View File

@ -0,0 +1,678 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"using MetagraphOptimization"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Graph:\n",
" Nodes: Total: 438436, ComputeTaskP: 10, ComputeTaskU: 10, \n",
" ComputeTaskV: 109600, ComputeTaskSum: 1, ComputeTaskS2: 40320, \n",
" ComputeTaskS1: 69272, DataTask: 219223\n",
" Edges: 628665\n",
" Total Compute Effort: 1.903443e6\n",
" Total Data Transfer: 1.8040896e7\n",
" Total Compute Intensity: 0.10550712115407128\n"
]
}
],
"source": [
"model = ABCModel()\n",
"process_str = \"AB->ABBBBBBB\"\n",
"process = parse_process(process_str, model)\n",
"graph = parse_dag(\"../input/$process_str.txt\", model)\n",
"print(graph)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"351.606942 seconds (1.13 G allocations: 25.949 GiB, 1.33% gc time, 0.72% compilation time)\n",
"Graph:\n",
" Nodes: Total: 277188, ComputeTaskP: 10, ComputeTaskU: 10, \n",
" ComputeTaskV: 69288, ComputeTaskSum: 1, ComputeTaskS2: 40320, \n",
" ComputeTaskS1: 28960, DataTask: 138599\n",
" Edges: 427105\n",
" Total Compute Effort: 1.218139e6\n",
" Total Data Transfer: 1.2235968e7\n",
" Total Compute Intensity: 0.0995539543745129\n"
]
}
],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"@time reduce_all!(graph)\n",
"print(graph)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 1 NUMA nodes\n",
"CUDA is non-functional\n"
]
}
],
"source": [
"# Get machine and set dictionary caching strategy\n",
"machine = get_machine_info()\n",
"MetagraphOptimization.set_cache_strategy(machine.devices[1], MetagraphOptimization.Dictionary())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2315.896312 seconds (87.18 M allocations: 132.726 GiB, 0.11% gc time, 0.04% compilation time)\n"
]
},
{
"data": {
"text/plain": [
"compute__8fd7c454_6214_11ee_3616_0f2435e477fe (generic function with 1 method)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@time compute_AB_AB7 = get_compute_function(graph, process, machine)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 1.910169 seconds (4.34 M allocations: 278.284 MiB, 6.25% gc time, 99.23% compilation time)\n"
]
},
{
"data": {
"text/plain": [
"1000-element Vector{ABCProcessInput}:\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.411745173347825, 0.0, 0.0, 8.352092962924948]\n",
" B: [8.411745173347825, 0.0, 0.0, -8.352092962924948]\n",
" 8 Outgoing Particles:\n",
" A: [-2.003428483168789, 1.2386385417950023, -0.8321671195319228, 0.8871291535745444]\n",
" B: [-2.444326994820653, 1.1775023368116424, -0.9536682034633904, 1.6366855721594777]\n",
" B: [-4.289211829680359, -3.7216649121036443, 1.128125248220305, 1.50793959634144]\n",
" B: [-1.2727607454602508, 0.07512513775641204, 0.6370236198332677, -0.45659285653208986]\n",
" B: [-1.8777156401619268, -1.042329795325101, -0.5508846238377632, -1.0657817573524957]\n",
" B: [-1.1322368113474306, 0.0498922458527246, -0.2963537951915457, -0.4377732162313449]\n",
" B: [-1.4340705015357569, 0.7798902829682378, 0.144450581630926, -0.6538068364381232]\n",
" B: [-2.369739340520482, 1.4429461622447262, 0.7234742923401235, -1.4177996555214083]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.262146117199348, 0.0, 0.0, 8.201405883258813]\n",
" B: [8.262146117199348, 0.0, 0.0, -8.201405883258813]\n",
" 8 Outgoing Particles:\n",
" A: [-2.022253637967156, 0.040616190652067494, 1.5789161216660899, -0.7712872241073523]\n",
" B: [-1.085155894223277, -0.4013306445746292, 0.044561160964560184, -0.12046298778597243]\n",
" B: [-2.3099664718736963, -0.6028883246226666, 0.7721426580907682, 1.8374619682515352]\n",
" B: [-3.8528592267292674, -1.1057919702708323, -3.154341441424319, -1.6345881470237529]\n",
" B: [-1.445065980497648, -0.3803292238069696, -0.9038074225417192, 0.3559459403736899]\n",
" B: [-1.637993216461692, 0.18276067729419151, -0.6165325663294264, 1.1267244146927589]\n",
" B: [-3.0791604558286254, 1.8666082398498536, 2.1149851082876507, -0.7237684597886623]\n",
" B: [-1.091837350817336, 0.4003550554789843, 0.16407638128639515, -0.0700255046122441]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.522164300929319, 0.0, 0.0, 9.4695096480173]\n",
" B: [9.522164300929319, 0.0, 0.0, -9.4695096480173]\n",
" 8 Outgoing Particles:\n",
" A: [-2.2614545815907876, 0.09596466269330481, -1.680314037563078, -1.1320390202111377]\n",
" B: [-2.5164555101345942, 2.0544568173259474, 0.7608284478099104, 0.7299969816600982]\n",
" B: [-3.527555187469315, 3.1461533872404055, -0.4998113855480195, 1.1382236350884531]\n",
" B: [-1.5843416170605953, -0.649775322646379, 0.6368565466386346, -0.8260412390634552]\n",
" B: [-1.0715042390215452, 0.33101538188959895, -0.19275377509309963, -0.037364868271978664]\n",
" B: [-1.8269658913133924, -1.2104472444295427, -0.7036857693244948, 0.6143681099517287]\n",
" B: [-1.7510547915269752, 0.35168054121444203, 0.408535633181173, -1.3325210378384098]\n",
" B: [-4.504996783741433, -4.119048223287777, 1.270344339898973, 0.8453774386847008]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.225275339000687, 0.0, 0.0, 7.1557392157883655]\n",
" B: [7.225275339000687, 0.0, 0.0, -7.1557392157883655]\n",
" 8 Outgoing Particles:\n",
" A: [-1.5721586195862234, -0.6346644373772993, 0.7957285133297657, -0.6600756851617959]\n",
" B: [-1.0093393293662618, -0.11321130994303012, 0.07324286826550051, -0.024177745030521003]\n",
" B: [-2.7355755394886443, 0.2329840388558535, -2.4939308642531, -0.4576033371958622]\n",
" B: [-1.618399027736879, -0.47727357006920945, 1.0132042772011558, -0.6040218911217943]\n",
" B: [-1.7201610947708947, 0.01110230391313025, 0.8839000043421623, -1.0851505486038107]\n",
" B: [-1.792300907703241, 0.8101193095744785, -0.625916307414256, 1.0790171565463333]\n",
" B: [-1.5563810656498285, -1.1865287585293671, 0.12019738267353275, -0.004910793671790455]\n",
" B: [-2.4462350936994026, 1.3574724235754438, 0.2335741258552372, 1.7569228442392408]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.94532861335446, 0.0, 0.0, 7.882147345374172]\n",
" B: [7.94532861335446, 0.0, 0.0, -7.882147345374172]\n",
" 8 Outgoing Particles:\n",
" A: [-2.118671714766621, -0.6322452591326608, -1.2236882164873555, -1.2615953852509143]\n",
" B: [-2.560753710001491, -1.7412395645571277, -1.5891033163317627, 0.01717533495153369]\n",
" B: [-1.5550581087132076, -0.639122838128628, -0.9624327134008909, 0.2888788525193626]\n",
" B: [-2.181477133464949, 0.4918918998013713, 1.8559068969600523, -0.2692479016749415]\n",
" B: [-1.2628370388798702, -0.4013500667990802, 0.24813196852393224, 0.6100049482124643]\n",
" B: [-1.901139724448186, 1.3625293914322611, -0.8176066997802711, 0.2989401174693193]\n",
" B: [-2.2302691928842697, -0.1867565668705846, 1.9609184768063308, 0.3066290670808993]\n",
" B: [-2.0804506035503256, 1.7462930042544484, 0.5278736037099664, 0.009214966692276028]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.597768901835826, 0.0, 0.0, 5.507723366179557]\n",
" B: [5.597768901835826, 0.0, 0.0, -5.507723366179557]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0009073340208385, 0.03522831505376105, -0.010844681575969111, -0.021374049609080487]\n",
" B: [-1.3943823799403026, -0.886019044587247, 0.21582726795187737, -0.3356948979730148]\n",
" B: [-1.0593061926863385, 0.3261714964515558, -0.10930051701751846, -0.06160488410736567]\n",
" B: [-1.0190344437384602, 0.02512063114228613, 0.04379726771854621, -0.18942531709556668]\n",
" B: [-1.0919277601624486, -0.39612686480944176, 0.07078221355247243, -0.17429750036714983]\n",
" B: [-1.8292258091360047, 1.1565638126055895, 0.329244535677723, 0.9486966026643375]\n",
" B: [-1.7379569022732355, 0.6562121276078657, 0.7749535141539342, -0.9946491284065995]\n",
" B: [-2.0627969817140217, -0.9171504734643696, -1.3144596004610647, 0.8283491748944392]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.860362769879496, 0.0, 0.0, 6.787089017712134]\n",
" B: [6.860362769879496, 0.0, 0.0, -6.787089017712134]\n",
" 8 Outgoing Particles:\n",
" A: [-2.1483538194490985, 1.8204047500578164, 0.1342978924269131, -0.532461036694855]\n",
" B: [-1.2136825716769264, 0.12932805245115084, -0.43609629710270903, -0.5158678699965871]\n",
" B: [-3.3642987422516573, -1.7653207470663739, 0.533955101409256, 2.630026736893018]\n",
" B: [-1.053677321951765, 0.11000921943972916, 0.04739423847128557, -0.30965732123337875]\n",
" B: [-1.2932387925896982, -0.6843810329952256, 0.045636429012288295, -0.4494513240410521]\n",
" B: [-1.1237194151971648, -0.45140047643622017, 0.19994785657222267, -0.13785422959193222]\n",
" B: [-1.7619597212239484, 1.3299261857304887, 0.561749934748497, 0.1422512233127988]\n",
" B: [-1.7617951554187332, -0.488565951181366, -1.0868851555377534, -0.8269861786480115]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.57507915889135, 0.0, 0.0, 9.522717096450755]\n",
" B: [9.57507915889135, 0.0, 0.0, -9.522717096450755]\n",
" 8 Outgoing Particles:\n",
" A: [-3.4305207411483516, 2.6682294806816835, -1.883054168339437, -0.3211401453721668]\n",
" B: [-2.185574270107571, 1.4558232366821502, 1.2235951792097912, 0.40016050668089054]\n",
" B: [-3.0259648593433583, -0.9184166853584697, -0.10930222461665634, -2.7020412923806107]\n",
" B: [-3.246659025038245, -2.493839704051011, -1.0189869044243565, 1.5110340975546257]\n",
" B: [-1.4247322676315595, 0.05954103854817788, 0.9940897925990366, -0.19519831815252583]\n",
" B: [-1.4889906300188005, 0.5912092032645169, -0.19371449043911573, -0.9110650198822441]\n",
" B: [-1.1268952499657272, 0.36236812621338876, -0.3636229828302436, 0.07975319340034331]\n",
" B: [-3.220821274529085, -1.7249146959804351, 1.350995798840981, 2.1384969781516885]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.472852690841874, 0.0, 0.0, 8.413633740584764]\n",
" B: [8.472852690841874, 0.0, 0.0, -8.413633740584764]\n",
" 8 Outgoing Particles:\n",
" A: [-1.1530011327357317, 0.34211475449117323, -0.45923141786607913, -0.03841369149190832]\n",
" B: [-2.62915067223017, 1.042431210232047, 0.6288618003426715, -2.1048285595963105]\n",
" B: [-1.1265473249385953, -0.4344882737979479, -0.1553035746380426, 0.2370856700921221]\n",
" B: [-1.4826889242092416, -0.5889894099544346, -0.45026884678673923, -0.8054290077639529]\n",
" B: [-4.118520088756618, -2.101194203160593, -3.0008966741533745, 1.5943054265577095]\n",
" B: [-3.9992129109551517, 1.0607252636964415, 3.6847882851419875, 0.539352496783755]\n",
" B: [-1.3172538577755006, 0.4084669000294691, -0.6351790575407871, 0.4060296568803221]\n",
" B: [-1.1193304700827373, 0.2709337584638445, 0.3872294855003629, 0.17189800853826395]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.913538688235051, 0.0, 0.0, 5.828373685450576]\n",
" B: [5.913538688235051, 0.0, 0.0, -5.828373685450576]\n",
" 8 Outgoing Particles:\n",
" A: [-1.6813734506828508, -1.1942921586618185, -0.384476919421686, 0.5028522833318558]\n",
" B: [-1.412586238014363, 0.010275442474480664, 0.8780055986304257, -0.4737092609218783]\n",
" B: [-1.5338446207986793, 1.1234162145644635, 0.1670274754582306, -0.25043392751132176]\n",
" B: [-1.4260274101869397, 0.9023875675844153, -0.4646063309051003, -0.058239245843783906]\n",
" B: [-1.1055189977833793, -0.3699146930280028, 0.2809292901965394, -0.08008812803177658]\n",
" B: [-1.1926016738662872, 0.4242726765633766, 0.34415633034138016, -0.3519202590308968]\n",
" B: [-1.4188061371181722, 0.47356120240959365, 0.33662773751584696, 0.8218469496393668]\n",
" B: [-2.0563188480194308, -1.3697062519065082, -1.1576631818156364, -0.1103084116315648]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.062750568659298, 0.0, 0.0, 5.979711068085032]\n",
" B: [6.062750568659298, 0.0, 0.0, -5.979711068085032]\n",
" 8 Outgoing Particles:\n",
" A: [-1.1157392140073992, -0.0424317149721654, 0.4662958482482185, -0.16013033799016252]\n",
" B: [-2.395340693850968, -1.171776361305547, -1.746409249879336, 0.5609384374776449]\n",
" B: [-1.0289722654275464, 0.23139962589771268, 0.07055331234631396, 0.01613586906426155]\n",
" B: [-1.212565238145815, -0.6377842504248107, 0.04163119753237706, 0.24862129848767983]\n",
" B: [-1.8156755638105053, -0.3987185167288875, 1.2510245302740972, 0.7567290942527487]\n",
" B: [-2.003891077687212, 1.2159250459117166, 0.38048599808923245, -1.1799729400359336]\n",
" B: [-1.4663599649673638, 0.593985649692284, -0.7733488095969958, -0.44645740391848543]\n",
" B: [-1.086957119421786, 0.20940052192969777, 0.3097671729860923, 0.20413598266224653]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.088363151833832, 0.0, 0.0, 7.017470496715726]\n",
" B: [7.088363151833832, 0.0, 0.0, -7.017470496715726]\n",
" 8 Outgoing Particles:\n",
" A: [-3.1474601133746627, 0.14412280671945385, 2.7364508363525357, 1.1821889028802701]\n",
" B: [-1.256451004773104, 0.1153142495225348, -0.7455659837621855, -0.09748392231091944]\n",
" B: [-1.4964417911663928, -0.0996845872039782, -0.8492275192498467, 0.7128910421459969]\n",
" B: [-3.2499484244824526, -0.8927423628721523, -1.0242747556675866, -2.777775559729678]\n",
" B: [-1.0489067674373789, -0.31603136975662793, 0.016268502528308637, -0.008057042333727152]\n",
" B: [-1.6957667777105587, 1.0857339287179024, 0.6252297389508089, 0.5530773670555896]\n",
" B: [-1.243679438145053, 0.06348629097723194, -0.7145975145476898, 0.17904867473682565]\n",
" B: [-1.0380719865780628, -0.10019895610436466, -0.044283304604344965, 0.2561105375556422]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.842517855137334, 0.0, 0.0, 9.791586068084028]\n",
" B: [9.842517855137334, 0.0, 0.0, -9.791586068084028]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0081083393933719, 0.09315850477843095, -0.05390640772287413, 0.06854207575149836]\n",
" B: [-1.2533776879399583, -0.09567218890986252, -0.022562148977002077, -0.749195175056841]\n",
" B: [-4.199102452438099, 3.1204551726062775, 2.23725963921713, 1.3747327844190023]\n",
" B: [-5.1018332572388285, -4.999892707918183, 0.09407944148737099, -0.14465321518774693]\n",
" B: [-3.7582268429742243, 2.1814891293707577, -1.5410280493623207, -2.4475715991095703]\n",
" B: [-1.1792132348986593, 0.6125282131702711, -0.12369433042852651, -0.007263198361168502]\n",
" B: [-1.3600169327450258, -0.07835376476887727, -0.6694537001487819, 0.6287594836317273]\n",
" B: [-1.8251569626465018, -0.8337123583288142, 0.07930555593500455, 1.2766488439130985]\n",
"\n",
" ⋮\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.861596443743153, 0.0, 0.0, 9.810763702141012]\n",
" B: [9.861596443743153, 0.0, 0.0, -9.810763702141012]\n",
" 8 Outgoing Particles:\n",
" A: [-1.8179384769334697, 0.9572508915748105, -0.9794338269553214, 0.6551949443563104]\n",
" B: [-2.1028582035167607, -0.7676665378472812, 0.6218562087985972, -1.5639678917247444]\n",
" B: [-3.1263866679666865, 2.3808322573838474, -1.6099851834448586, 0.7168535896041835]\n",
" B: [-5.177179415841987, -1.3605325795287053, 4.805481256903438, -0.9270855911989424]\n",
" B: [-1.2605754590213083, -0.023284320526100116, -0.14250915308265208, 0.7537900699744495]\n",
" B: [-2.712925004518324, -1.4343063146086636, -1.452340398698398, 1.4810249296764189]\n",
" B: [-2.3798188172675734, 0.6412170781802653, -1.487389994435021, -1.4283029321979925]\n",
" B: [-1.1455108424201939, -0.39351047462817185, 0.24432109091421514, 0.3124928815103169]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.611571819338176, 0.0, 0.0, 5.521751378284825]\n",
" B: [5.611571819338176, 0.0, 0.0, -5.521751378284825]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0759150984150232, -0.3903007964405737, 0.045679777762273936, -0.05632002484775736]\n",
" B: [-1.021003529021616, -0.07269336486556076, 0.11388411952175649, 0.15554513267817288]\n",
" B: [-1.6939705353811365, -0.1440535362616654, -0.25084793375093056, -1.3363607550219565]\n",
" B: [-1.185801144621379, -0.31618880274591826, 0.5459120200606805, -0.09016131075324207]\n",
" B: [-1.197431131926246, 0.16472462054297168, -0.17198607315407527, -0.6141074056988615]\n",
" B: [-1.0089442324730478, -0.12314856400749492, -0.027052115631495212, -0.04550910308256443]\n",
" B: [-2.703474424566498, 0.16902217864171518, -0.14049660772763695, 2.502092358533033]\n",
" B: [-1.3366035422714058, 0.7126382651365266, -0.11509318708057305, -0.5151788918068239]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.775111706253933, 0.0, 0.0, 8.717946171962454]\n",
" B: [8.775111706253933, 0.0, 0.0, -8.717946171962454]\n",
" 8 Outgoing Particles:\n",
" A: [-2.2750151423103953, 1.8467170131598, 0.8729070809034145, 0.05799482008261441]\n",
" B: [-1.5756212156561644, 1.0377655822554295, 0.3001332912880399, 0.5617337616455574]\n",
" B: [-1.6945981163898138, -0.5153714693329569, 0.050834292767083435, 1.2662823142365867]\n",
" B: [-2.630307241578496, -0.5126707368632603, 1.3344949978186418, -1.9684532002212756]\n",
" B: [-3.0848917600353407, -2.827901193400985, -0.46541663267058264, -0.5503811129833626]\n",
" B: [-2.812675339815945, 2.346626876124383, -1.1757879806725677, 0.14834923648401968]\n",
" B: [-1.695817659938434, -0.3817827622891304, -0.19598317768122073, 1.3006267920675472]\n",
" B: [-1.7812969367832734, -0.9933833096532803, -0.7211818717528079, -0.8161526113116866]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.832501783927461, 0.0, 0.0, 6.758925996589395]\n",
" B: [6.832501783927461, 0.0, 0.0, -6.758925996589395]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0114752465345387, -0.11558780230223581, -0.03776248532804595, -0.09108034372406744]\n",
" B: [-1.031154612454516, -0.04425244057817861, -0.0789748074180023, -0.23470095032271823]\n",
" B: [-2.2555952063288855, 1.7491237654517413, -0.4233804231771479, -0.9214254203222908]\n",
" B: [-2.089561973736715, 0.9235335217807571, 1.3477207222453012, -0.8348676128969853]\n",
" B: [-1.3199981586264844, -0.6902187266500668, -0.06216816149242132, -0.5119847340063199]\n",
" B: [-1.0105028642371863, -0.09317036739551621, -0.041275823376393385, -0.1035935696630954]\n",
" B: [-1.2426376312622325, -0.48126859609618416, 0.05225488689293943, -0.5565952280036419]\n",
" B: [-3.704077874674367, -1.2481593542103167, -0.7564139083462295, 3.254247858939119]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.775903429741401, 0.0, 0.0, 8.718743086485969]\n",
" B: [8.775903429741401, 0.0, 0.0, -8.718743086485969]\n",
" 8 Outgoing Particles:\n",
" A: [-1.7137666526922533, 1.1358800766324049, 0.08268488211087159, 0.7999598750311686]\n",
" B: [-1.1669696745288112, -0.04351472671445914, 0.5992401461010018, 0.028912577361687116]\n",
" B: [-3.5481649603318184, 0.4490928742123019, 1.0371640968528058, -3.21124287656006]\n",
" B: [-1.276578701414564, -0.08287623449031867, -0.6317118623642547, -0.47299559576203803]\n",
" B: [-4.955351547203613, -2.6459981607514886, 0.5026315754882429, 4.037519558961317]\n",
" B: [-2.3130557250521284, 1.4242375193555785, -1.5228161303749386, 0.05296516521446809]\n",
" B: [-1.4353464814836179, 0.25997106791735547, -0.029309860840599063, -0.9958792586507745]\n",
" B: [-1.1425731167759967, -0.4967924161613736, -0.03788284697312998, -0.23923944559576807]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.907102929629284, 0.0, 0.0, 8.850789942090511]\n",
" B: [8.907102929629284, 0.0, 0.0, -8.850789942090511]\n",
" 8 Outgoing Particles:\n",
" A: [-2.946046511363992, -0.9439001466724447, 2.1873638734369836, 1.4155146927582347]\n",
" B: [-3.7848309582649415, -2.22832689875391, -0.18756115269295068, -2.885190709282662]\n",
" B: [-1.0159875652570234, 0.04172671107403079, -0.15271016054388648, 0.08467125371989566]\n",
" B: [-2.0867601165869685, -1.8155383548303043, -0.021995043965926685, -0.24063350631004576]\n",
" B: [-4.34790862339958, 3.6266859724946396, -1.8990793068549607, 1.0700261868843775]\n",
" B: [-1.1578951917200673, 0.35622580432348594, 0.23734793715600985, 0.3968506117802061]\n",
" B: [-1.4421363377447174, 1.0156020669389267, -0.20020339434090184, -0.0907097523285523]\n",
" B: [-1.0326405549212787, -0.052475154574424254, 0.03683724780563263, 0.24947122277854633]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.294285658794556, 0.0, 0.0, 6.214340830249562]\n",
" B: [6.294285658794556, 0.0, 0.0, -6.214340830249562]\n",
" 8 Outgoing Particles:\n",
" A: [-1.06844272609547, -0.2848922847204133, 0.15179083391454987, -0.19330232226393051]\n",
" B: [-2.114647837734541, -1.6956804594706658, -0.38950327120442063, 0.6668511518515798]\n",
" B: [-1.494217345848325, 0.7529614584695401, -0.5432224448027106, -0.6088053006963738]\n",
" B: [-1.3783311635115514, 0.9215501628423943, 0.0395584401371469, -0.2213079833313275]\n",
" B: [-1.7816982863175768, 0.5393674002906785, 0.38766524831377364, 1.316528482874748]\n",
" B: [-1.659172767477475, 0.17135237894801714, -1.2297516401309854, -0.45956886117628726]\n",
" B: [-1.55277617510909, -0.23319042207457166, 1.041131562383322, 0.522284545863997]\n",
" B: [-1.5392850154950812, -0.17146823428497893, 0.5423312713893238, -1.022679713122405]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.965556009635571, 0.0, 0.0, 6.8934005050751415]\n",
" B: [6.965556009635571, 0.0, 0.0, -6.8934005050751415]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0775179795487104, -0.05690318568456522, -0.2919638065794134, 0.269377354945329]\n",
" B: [-3.216279237662679, -2.600571207682032, 0.23217633942174215, 1.5898351096286563]\n",
" B: [-1.9852997763312183, 1.2696870590322706, -0.6412445999499571, -0.9581833525279955]\n",
" B: [-1.9885313318262752, 0.8019078287339996, 1.2060162608136897, 0.9255946577864792]\n",
" B: [-1.4288503016026572, 0.2805632486843285, 0.07929023042776773, -0.9780646743628009]\n",
" B: [-1.3652585458391595, -0.12810083240879516, 0.7809145290728301, -0.4875382774777694]\n",
" B: [-1.8158888731893035, 0.7439741257624499, -1.2924797037897653, -0.2710186621991885]\n",
" B: [-1.0534859732711408, -0.3105570364376559, -0.07270924941689365, -0.0900021557927108]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.43062328219917, 0.0, 0.0, 6.352394493225528]\n",
" B: [6.43062328219917, 0.0, 0.0, -6.352394493225528]\n",
" 8 Outgoing Particles:\n",
" A: [-2.125364788369443, -1.214725294501684, 0.4075454777366224, 1.369497946736289]\n",
" B: [-1.1032249572940587, -0.2977536437640783, 0.35819035202044425, 0.012155070594697458]\n",
" B: [-2.225917349319406, 1.3039585629995813, -0.8668848261688078, 1.2259326287114942]\n",
" B: [-2.717025897056506, -0.9721840017189309, 0.6274004665152297, -2.2457641565164295]\n",
" B: [-1.000557419196324, 0.013685057618434337, 0.015873673340379625, 0.025997976872664537]\n",
" B: [-1.1652637249339481, 0.20750251779397902, -0.05219673300317853, -0.5586212982154317]\n",
" B: [-1.4667402310584912, 0.9160649085291783, -0.533306342231441, -0.16654228923208916]\n",
" B: [-1.057152197170161, 0.043451893043520345, 0.0433779317907512, 0.3373441210488047]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.156196486154876, 0.0, 0.0, 8.094661272762755]\n",
" B: [8.156196486154876, 0.0, 0.0, -8.094661272762755]\n",
" 8 Outgoing Particles:\n",
" A: [-1.4617318374080812, 0.10404421660552193, -0.19476289320497314, -1.0430254938944576]\n",
" B: [-2.745518719911882, 2.0283487429720055, -0.01415841484271091, -1.556751090431481]\n",
" B: [-1.193795120882441, -0.223211890483827, 0.20666745479885903, 0.5767250694363129]\n",
" B: [-1.0771186742980503, 0.29121400254582763, -0.18584437613704033, 0.20209134345899718]\n",
" B: [-2.9756813564276348, 0.7747616688600099, 0.31071107817153876, 2.6754219325851647]\n",
" B: [-1.8605025819101852, -0.3441559100391822, 0.5570133470539003, 1.4257498722017754]\n",
" B: [-3.3546424693401353, -1.4228183303706836, -0.7768040014609222, -2.7614832317390525]\n",
" B: [-1.6434022121313414, -1.2081825000896715, 0.0971778056213486, 0.48127159838273986]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.631814348202784, 0.0, 0.0, 9.579762399884718]\n",
" B: [9.631814348202784, 0.0, 0.0, -9.579762399884718]\n",
" 8 Outgoing Particles:\n",
" A: [-2.4271747113709625, -0.9216752449526319, 0.35006248470601437, 1.9796838331313595]\n",
" B: [-1.926574191117535, -0.6155920425308834, -0.36855158619622796, 1.4821957628346814]\n",
" B: [-2.809711053334662, 0.053095841327541846, -2.415282611989454, -1.0286238083410733]\n",
" B: [-2.069340346061984, 0.0706218659128716, 1.6880494984307581, 0.6539655271821153]\n",
" B: [-1.600891859223819, 0.522182956459051, 1.0136801062226364, -0.5124766796267364]\n",
" B: [-2.3653602811566903, 0.7359929823506941, 2.003935313635875, 0.19361520696286152]\n",
" B: [-4.134587420071929, 0.11270979705086029, -1.0448676862999513, -3.871738776569513]\n",
" B: [-1.9299888340679847, 0.04266384438249662, -1.2270255185096508, 1.1033789344263045]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.383091586636561, 0.0, 0.0, 7.31505580133628]\n",
" B: [7.383091586636561, 0.0, 0.0, -7.31505580133628]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0026822379766207, 0.02425303574920085, -0.0683120173174935, 0.010813366763733786]\n",
" B: [-3.2851307251831745, -2.830568076855887, -0.9156122597784988, 0.9703723169846757]\n",
" B: [-2.028220232462834, 1.6810294384373135, 0.4923274291375999, -0.21314558638988076]\n",
" B: [-1.5191535227395792, -0.17123543395193966, -1.1293131485074372, -0.05619309939470401]\n",
" B: [-1.1059696544762567, 0.2375361941082015, -0.40208228112542477, -0.07124094550113935]\n",
" B: [-1.371740281577803, -0.2278482692103191, -0.6986437390927988, -0.5845113276468179]\n",
" B: [-1.2867512190171768, 0.6015837296464805, -0.16735271525316733, -0.5155761675681034]\n",
" B: [-3.166535299839676, 0.6852493820769491, 2.888988731937221, 0.4594814427522358]\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@time inputs = [gen_process_input(process) for _ in 1:1000]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Internal error: stack overflow in type inference of materialize(Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{1}, Nothing, typeof(MetagraphOptimization.compute__8fd7c454_6214_11ee_3616_0f2435e477fe), Tuple{Array{MetagraphOptimization.ABCProcessInput, 1}}}).\n",
"This might be caused by recursion over very long tuples or argument lists.\n"
]
},
{
"ename": "LoadError",
"evalue": "StackOverflowError:",
"output_type": "error",
"traceback": [
"StackOverflowError:",
"",
"Stacktrace:",
" [1] get",
" @ ./iddict.jl:102 [inlined]",
" [2] in",
" @ ./iddict.jl:189 [inlined]",
" [3] haskey",
" @ ./abstractdict.jl:17 [inlined]",
" [4] findall(sig::Type, table::Core.Compiler.CachedMethodTable{Core.Compiler.InternalMethodTable}; limit::Int64)",
" @ Core.Compiler ./compiler/methodtable.jl:120",
" [5] findall",
" @ ./compiler/methodtable.jl:114 [inlined]",
" [6] find_matching_methods(argtypes::Vector{Any}, atype::Any, method_table::Core.Compiler.CachedMethodTable{Core.Compiler.InternalMethodTable}, union_split::Int64, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:336",
" [7] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:80",
" [8] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [9] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [10] abstract_apply(interp::Core.Compiler.NativeInterpreter, argtypes::Vector{Any}, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1566",
" [11] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1855",
" [12] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [13] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [14] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [15] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [16] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2682",
" [17] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [18] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [19] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [20] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [21] typeinf_edge(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector, caller::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:932",
" [22] abstract_call_method(interp::Core.Compiler.NativeInterpreter, method::Method, sig::Any, sparams::Core.SimpleVector, hardlimit::Bool, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:611",
" [23] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:152",
"--- the last 16 lines are repeated 413 more times ---",
" [6632] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [6633] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6634] abstract_apply(interp::Core.Compiler.NativeInterpreter, argtypes::Vector{Any}, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1566",
" [6635] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1855",
" [6636] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6637] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [6638] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [6639] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [6640] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2658",
" [6641] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [6642] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [6643] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [6644] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [6645] typeinf_edge(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector, caller::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:932",
" [6646] abstract_call_method(interp::Core.Compiler.NativeInterpreter, method::Method, sig::Any, sparams::Core.SimpleVector, hardlimit::Bool, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:611",
" [6647] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:152",
" [6648] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [6649] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6650] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [6651] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [6652] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [6653] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2682",
" [6654] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [6655] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [6656] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [6657] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [6658] typeinf",
" @ ./compiler/typeinfer.jl:12 [inlined]",
" [6659] typeinf_type(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector)",
" @ Core.Compiler ./compiler/typeinfer.jl:1079",
" [6660] return_type(interp::Core.Compiler.NativeInterpreter, t::DataType)",
" @ Core.Compiler ./compiler/typeinfer.jl:1140",
" [6661] return_type(f::Any, t::DataType)",
" @ Core.Compiler ./compiler/typeinfer.jl:1112",
" [6662] combine_eltypes(f::Function, args::Tuple{Vector{ABCProcessInput}})",
" @ Base.Broadcast ./broadcast.jl:730",
" [6663] copy(bc::Base.Broadcast.Broadcasted{Style}) where Style",
" @ Base.Broadcast ./broadcast.jl:895",
" [6664] materialize(bc::Base.Broadcast.Broadcasted)",
" @ Base.Broadcast ./broadcast.jl:873",
" [6665] var\"##core#293\"()",
" @ Main ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:489",
" [6666] var\"##sample#294\"(::Tuple{}, __params::BenchmarkTools.Parameters)",
" @ Main ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:495",
" [6667] _run(b::BenchmarkTools.Benchmark, p::BenchmarkTools.Parameters; verbose::Bool, pad::String, kwargs::Base.Pairs{Symbol, Integer, NTuple{4, Symbol}, NamedTuple{(:samples, :evals, :gctrial, :gcsample), Tuple{Int64, Int64, Bool, Bool}}})",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:99",
" [6668] #invokelatest#2",
" @ ./essentials.jl:821 [inlined]",
" [6669] invokelatest",
" @ ./essentials.jl:816 [inlined]",
" [6670] #run_result#45",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:34 [inlined]",
" [6671] run_result",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:34 [inlined]",
" [6672] run(b::BenchmarkTools.Benchmark, p::BenchmarkTools.Parameters; progressid::Nothing, nleaves::Float64, ndone::Float64, kwargs::Base.Pairs{Symbol, Integer, NTuple{5, Symbol}, NamedTuple{(:verbose, :samples, :evals, :gctrial, :gcsample), Tuple{Bool, Int64, Int64, Bool, Bool}}})",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:117",
" [6673] run (repeats 2 times)",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:117 [inlined]",
" [6674] #warmup#54",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:169 [inlined]",
" [6675] warmup(item::BenchmarkTools.Benchmark)",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:168"
]
}
],
"source": [
"using BenchmarkTools\n",
"@benchmark compute_AB_AB7.(inputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.3",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,409 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "20768e45-df62-4638-ba33-b0ccf239f1aa",
"metadata": {},
"outputs": [],
"source": [
"using Revise\n",
"using MetagraphOptimization\n",
"using BenchmarkTools"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ff5f4a49",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 1 NUMA nodes\n",
"CUDA is non-functional\n"
]
},
{
"data": {
"text/plain": [
"Machine(MetagraphOptimization.AbstractDevice[MetagraphOptimization.NumaNode(0x0000, 0x0001, MetagraphOptimization.LocalVariables(), -1.0, UUID(\"a89974f6-6212-11ee-0866-0f591a3b69ea\"))], [-1.0;;])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get our machine's info\n",
"machine = get_machine_info()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9df482a4-ca44-44c5-9ea7-7a2977d529be",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ABCModel()"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a model identifier\n",
"model = ABCModel()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "30b16872-07f7-4d47-8ff8-8c3a849c9d4e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ABC Process: 'AB->ABBB'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a process in our model\n",
"process_str = \"AB->ABBB\"\n",
"process = parse_process(process_str, model)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "043bd9e2-f89a-4362-885a-8c89d4cdd76f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total: 280, ComputeTaskP"
]
},
{
"data": {
"text/plain": [
"Graph:\n",
" Nodes: \n",
" Edges: 385\n",
" Total Compute Effort: 1075.0\n",
" Total Data Transfer: 10944.0\n",
" Total Compute Intensity: 0.09822733918128655\n"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
": 6, ComputeTaskU: 6, \n",
" ComputeTaskV: 64, ComputeTaskSum: 1, ComputeTaskS2: 24, \n",
" ComputeTaskS1: 36, DataTask: 143"
]
}
],
"source": [
"# Read the graph (of the same process) from a file\n",
"graph = parse_dag(\"../input/$process_str.txt\", model)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "02f01ad3-fd10-48d5-a0e0-c03dc83c80a4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Input for ABC Process: 'AB->ABBB':\n",
" 2 Incoming particles:\n",
" A: [5.77986599979293, 0.0, 0.0, 5.692701553354288]\n",
" B: [5.77986599979293, 0.0, 0.0, -5.692701553354288]\n",
" 4 Outgoing Particles:\n",
" A: [-3.8835293143673746, -1.4292027910861678, 2.8576090179942106, 1.968057422378813]\n",
" B: [-1.1554024905063585, -0.1464656500147254, -0.2082400426692148, 0.5197487980391896]\n",
" B: [-2.849749730594798, -1.0177034035100576, -2.464951858896686, -0.09677625137882176]\n",
" B: [-3.6710504641173287, 2.5933718446109513, -0.1844171164283155, -2.391029969039186]\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Generate some random input data for our process\n",
"input_data = gen_process_input(process)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "083fb1be-ce2a-47f9-afb9-60a6fdfaed0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"compute__af4450a2_6212_11ee_2601_cde7cf2aedc1 (generic function with 1 method)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get the function computing the result of the process from a ProcessInput\n",
"AB_AB3_compute = get_compute_function(graph, process, machine)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a40c9500-8f79-4f04-b3c5-59b72a6b7ba9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-1.8924431710735022e-13"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Actually compute a result using the generated function and the input data\n",
"result = AB_AB3_compute(input_data)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "80c70010",
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"\n",
"# We can also mute the graph by applying some operations to it\n",
"reduce_all!(graph)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5b192b44",
"metadata": {},
"outputs": [],
"source": [
"# The result should be the same as before (we can use execute to save having to generate the function ourselves)\n",
"@assert result ≈ execute(graph, process, machine, input_data)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9b2f4a3f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1000-element Vector{Float64}:\n",
" -2.1491995259940396e-11\n",
" -1.04995646459455e-11\n",
" 5.821760691187782e-15\n",
" -6.556969485683705e-14\n",
" -1.3588086164373753e-14\n",
" -1.8789662441593694e-13\n",
" -2.131973301835892e-13\n",
" -5.3359759072004825e-12\n",
" -9.053914191490223e-13\n",
" -5.61107901706923e-13\n",
" -5.063492275603428e-11\n",
" 2.9168508985811397e-15\n",
" -1.6420151378194157e-13\n",
" ⋮\n",
" 1.0931677247833436e-13\n",
" -7.704755306462797e-16\n",
" -1.8385907037491397e-12\n",
" -6.036215596560059e-14\n",
" -9.98872401400362e-12\n",
" 3.4861755637292935e-13\n",
" -1.1051119822969222e-10\n",
" -2.496572513216201e-12\n",
" -3.8682427847201926e-11\n",
" 7.904149696653438e-15\n",
" -7.606811743178716e-11\n",
" -5.100594937480292e-13"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now we can generate a function and use it on lots of inputs\n",
"inputs = [gen_process_input(process) for _ in 1:1000]\n",
"AB_AB3_reduced_compute = get_compute_function(graph, process, machine)\n",
"\n",
"results = AB_AB3_reduced_compute.(inputs)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d43e4ff0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 879 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m4.567 ms\u001b[22m\u001b[39m … \u001b[35m14.334 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 54.51%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m4.998 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m5.686 ms\u001b[22m\u001b[39m ± \u001b[32m 1.414 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m9.09% ± 14.49%\n",
"\n",
" \u001b[39m \u001b[39m \u001b[39m▃\u001b[39m▇\u001b[39m█\u001b[34m▅\u001b[39m\u001b[39m▄\u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▆\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[32m█\u001b[39m\u001b[39m▆\u001b[39m█\u001b[39m█\u001b[39m▆\u001b[39m▆\u001b[39m▇\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▆\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▄\u001b[39m▁\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▆\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▄\u001b[39m▅\u001b[39m▆\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▁\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▁\u001b[39m▄\u001b[39m \u001b[39m▇\n",
" 4.57 ms\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 10 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m6.17 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m143006\u001b[39m."
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@benchmark results = AB_AB3_compute.($inputs)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e18d9546",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 1089 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m3.637 ms\u001b[22m\u001b[39m … \u001b[35m10.921 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m 0.00% … 59.52%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m4.098 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m 0.00%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m4.587 ms\u001b[22m\u001b[39m ± \u001b[32m 1.334 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m10.21% ± 15.77%\n",
"\n",
" \u001b[39m \u001b[39m▂\u001b[39m▆\u001b[39m▆\u001b[39m▇\u001b[34m█\u001b[39m\u001b[39m▆\u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▆\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m▇\u001b[32m▆\u001b[39m\u001b[39m▅\u001b[39m▇\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▆\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▆\u001b[39m▄\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▄\u001b[39m▆\u001b[39m▆\u001b[39m▆\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m▆\u001b[39m▆\u001b[39m▆\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▆\u001b[39m▄\u001b[39m▄\u001b[39m \u001b[39m█\n",
" 3.64 ms\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 8.78 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m5.26 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m123006\u001b[39m."
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@benchmark results = AB_AB3_reduced_compute.($inputs)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "13efed12-3547-400b-a7a2-5dfae9a973a2",
"metadata": {},
"outputs": [],
"source": [
"# Set a different caching strategy\n",
"MetagraphOptimization.set_cache_strategy(machine.devices[1], MetagraphOptimization.Dictionary())"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ef62716b-a219-4f6e-9150-f984d3734839",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 331 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m12.148 ms\u001b[22m\u001b[39m … \u001b[35m24.164 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m 0.00% … 13.35%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m15.412 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m17.47%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m15.117 ms\u001b[22m\u001b[39m ± \u001b[32m 2.194 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m12.31% ± 8.95%\n",
"\n",
" \u001b[39m \u001b[39m▄\u001b[39m█\u001b[39m▄\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[32m▄\u001b[39m\u001b[39m▄\u001b[34m▂\u001b[39m\u001b[39m \u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▅\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▅\u001b[39m▃\u001b[39m▃\u001b[39m▂\u001b[39m▃\u001b[39m▂\u001b[39m▅\u001b[39m▂\u001b[39m▃\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▃\u001b[39m▂\u001b[39m▃\u001b[32m█\u001b[39m\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m▇\u001b[39m█\u001b[39m▄\u001b[39m▆\u001b[39m▄\u001b[39m▆\u001b[39m▄\u001b[39m▄\u001b[39m▆\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m▄\u001b[39m▂\u001b[39m▂\u001b[39m▃\u001b[39m▃\u001b[39m▄\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▁\u001b[39m▃\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m \u001b[39m▃\n",
" 12.1 ms\u001b[90m Histogram: frequency by time\u001b[39m 21 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m27.46 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m118013\u001b[39m."
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ... and bench again\n",
"AB_AB3_reduced_dict_compute = get_compute_function(graph, process, machine)\n",
"@benchmark results = AB_AB3_reduced_dict_compute.($inputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5461ffd4-6a0e-4f1f-b1f1-3a2854a8ae88",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.3",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

70
notebooks/profiling.ipynb Normal file
View File

@ -0,0 +1,70 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"using Revise; using MetagraphOptimization; using BenchmarkTools; using ProfileView\n",
"using Base.Threads\n",
"nthreads()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = ABCModel()\n",
"process_str = \"AB->ABBBBB\"\n",
"process = parse_process(process_str, model)\n",
"graph = parse_dag(\"../input/$process_str.txt\", model)\n",
"print(graph)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"@ProfileView.profview reduce_all!(graph)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"@ProfileView.profview comp_func = get_compute_function(graph, process)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.3",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -6,20 +6,20 @@ julia --project=./examples -t 4 -e 'import Pkg; Pkg.instantiate()'
#for i in $(seq $minthreads $maxthreads)
# printf "(AB->AB, $i) "
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_abc("input/AB->AB.txt"))'
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_dag("input/AB->AB.txt"), ABCModel())'
#end
#for i in $(seq $minthreads $maxthreads)
# printf "(AB->ABBB, $i) "
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_abc("input/AB->ABBB.txt"))'
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_dag("input/AB->ABBB.txt"), ABCModel())'
#end
#for i in $(seq $minthreads $maxthreads)
# printf "(AB->ABBBBB, $i) "
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_abc("input/AB->ABBBBB.txt"))'
# julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_dag("input/AB->ABBBBB.txt"), ABCModel())'
#end
for i in $(seq $minthreads $maxthreads)
printf "(AB->ABBBBBBB, $i) "
julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_abc("input/AB->ABBBBBBB.txt"))'
julia --project=./examples -t $i -O3 -e 'using MetagraphOptimization; using BenchmarkTools; @btime get_operations(graph) setup=(graph = parse_dag("input/AB->ABBBBBBB.txt"), ABCModel())'
end

View File

@ -29,7 +29,7 @@ export children
export compute
export get_properties
export get_exit_node
export is_valid
export is_valid, is_scheduled
export Operation
export AppliedOperation
@ -42,7 +42,6 @@ export can_pop
export reset_graph!
export get_operations
export parse_abc
export ComputeTaskP
export ComputeTaskS1
export ComputeTaskS2
@ -51,9 +50,15 @@ export ComputeTaskU
export ComputeTaskSum
export execute
export gen_particles
export parse_dag, parse_process
export gen_process_input
export get_compute_function
export ParticleValue
export Particle
export ParticleA, ParticleB, ParticleC
export ABCProcessDescription, ABCProcessInput, ABCModel
export Machine
export get_machine_info
export ==, in, show, isempty, delete!, length
@ -72,6 +77,7 @@ import Base.insert!
import Base.collect
include("devices/interface.jl")
include("task/type.jl")
include("node/type.jl")
include("diff/type.jl")
@ -111,15 +117,34 @@ include("properties/utility.jl")
include("task/create.jl")
include("task/compare.jl")
include("task/compute.jl")
include("task/print.jl")
include("task/properties.jl")
include("models/interface.jl")
include("models/print.jl")
include("models/abc/types.jl")
include("models/abc/particle.jl")
include("models/abc/compute.jl")
include("models/abc/create.jl")
include("models/abc/properties.jl")
include("models/abc/parse.jl")
include("models/abc/print.jl")
include("devices/measure.jl")
include("devices/detect.jl")
include("devices/impl.jl")
include("devices/numa/impl.jl")
include("devices/cuda/impl.jl")
# can currently not use AMDGPU because of incompatability with the newest rocm drivers
# include("devices/rocm/impl.jl")
# oneapi seems also broken for now
# include("devices/oneapi/impl.jl")
include("scheduler/interface.jl")
include("scheduler/greedy.jl")
include("code_gen/main.jl")

View File

@ -1,126 +1,157 @@
using DataStructures
"""
gen_code(graph::DAG)
Generate the code for a given graph. The return value is a tuple of:
Generate the code for a given graph. The return value is a named tuple of:
- `code::Expr`: The julia expression containing the code for the whole graph.
- `inputSymbols::Dict{String, Symbol}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
- `outputSymbol::Symbol`: The symbol of the final calculated value
See also: [`execute`](@ref)
"""
function gen_code(graph::DAG)
code = Vector{Expr}()
sizehint!(code, length(graph.nodes))
function gen_code(graph::DAG, machine::Machine)
sched = schedule_dag(GreedyScheduler(), graph, machine)
nodeQueue = PriorityQueue{Node, Int}()
inputSyms = Dict{String, Symbol}()
codeAcc = Vector{Expr}()
sizehint!(codeAcc, length(graph.nodes))
# use a priority equal to the number of unseen children -> 0 are nodes that can be added
for node in sched
# TODO: this is kind of ugly, should init nodes be scheduled differently from the rest?
if (node isa DataTaskNode && length(node.children) == 0)
push!(codeAcc, get_init_expression(node, entry_device(machine)))
continue
end
push!(codeAcc, get_expression(node))
end
# get inSymbols
inputSyms = Dict{String, Vector{Symbol}}()
for node in get_entry_nodes(graph)
enqueue!(nodeQueue, node => 0)
push!(inputSyms, node.name => Symbol("data_$(to_var_name(node.id))_in"))
if !haskey(inputSyms, node.name)
inputSyms[node.name] = Vector{Symbol}()
end
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
end
node = nothing
while !isempty(nodeQueue)
@assert peek(nodeQueue)[2] == 0
node = dequeue!(nodeQueue)
# get outSymbol
outSym = Symbol(to_var_name(get_exit_node(graph).id))
push!(code, get_expression(node))
for parent in node.parents
# reduce the priority of all parents by one
if (!haskey(nodeQueue, parent))
enqueue!(nodeQueue, parent => length(parent.children) - 1)
else
nodeQueue[parent] = nodeQueue[parent] - 1
end
return (code = Expr(:block, codeAcc...), inputSymbols = inputSyms, outputSymbol = outSym)
end
function gen_cache_init_code(machine::Machine)
initializeCaches = Vector{Expr}()
for device in machine.devices
push!(initializeCaches, gen_cache_init_code(device))
end
return Expr(:block, initializeCaches...)
end
function gen_input_assignment_code(
inputSymbols::Dict{String, Vector{Symbol}},
processDescription::AbstractProcessDescription,
machine::Machine,
processInputSymbol::Symbol = :input,
)
@assert length(inputSymbols) >=
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
assignInputs = Vector{Expr}()
for (name, symbols) in inputSymbols
type = type_from_name(name)
index = parse(Int, name[2:end])
p = nothing
if (index > in_particles(processDescription)[type])
index -= in_particles(processDescription)[type]
@assert index <= out_particles(processDescription)[type] "Too few particles of type $type in input particles for this process"
p = "filter(x -> typeof(x) <: $type, out_particles($(processInputSymbol)))[$(index)]"
else
p = "filter(x -> typeof(x) <: $type, in_particles($(processInputSymbol)))[$(index)]"
end
for symbol in symbols
# TODO: how to get the "default" cpu device?
device = entry_device(machine)
evalExpr = eval(gen_access_expr(device, symbol))
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue($p, 1.0)"))
end
end
# node is now the last node we looked at -> the output node
outSym = Symbol("data_$(to_var_name(node.id))")
return Expr(:block, assignInputs...)
end
return (
code = Expr(:block, code...),
inputSymbols = inputSyms,
outputSymbol = outSym,
"""
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
"""
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
initCaches = gen_cache_init_code(machine)
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
functionId = to_var_name(UUIDs.uuid1(rng[1]))
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
expr = Meta.parse(
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
)
func = eval(expr)
return func
end
"""
execute(generated_code, input::Dict{ParticleType, Vector{Particle}})
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
Execute the given `generated_code` (as returned by [`gen_code`](@ref)) on the given input particles.
Execute the code of the given `graph` on the given input particles.
This is essentially shorthand for
```julia
compute_graph = get_compute_function(graph, process)
result = compute_graph(particles)
```
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
"""
function execute(generated_code, input::Dict{ParticleType, Vector{Particle}})
(code, inputSymbols, outputSymbol) = generated_code
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
assignInputs = Vector{Expr}()
for (name, symbol) in inputSymbols
type = nothing
if startswith(name, "A")
type = A
elseif startswith(name, "B")
type = B
else
type = C
initCaches = gen_cache_init_code(machine)
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
functionId = to_var_name(UUIDs.uuid1(rng[1]))
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
expr = Meta.parse(
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
)
func = eval(expr)
result = 0
try
result = @eval $func($input)
catch e
println("Error while evaluating: $e")
# if we find a uuid in the exception we can color it in so it's easier to spot
uuidRegex = r"[0-9a-f]{8}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{12}"
m = match(uuidRegex, string(e))
functionStr = string(expr)
if (isa(m, RegexMatch))
functionStr = replace(functionStr, m.match => "\033[31m$(m.match)\033[0m")
end
index = parse(Int, name[2:end])
push!(
assignInputs,
Meta.parse(
"$(symbol) = ParticleValue(Particle($(input[type][index]).P0, $(input[type][index]).P1, $(input[type][index]).P2, $(input[type][index]).P3, $(type)), 1.0)",
),
)
println("Function:\n$functionStr")
@assert false
end
assignInputs = Expr(:block, assignInputs...)
eval(assignInputs)
eval(code)
eval(Meta.parse("result = $outputSymbol"))
return result
end
"""
execute(graph::DAG, input::Dict{ParticleType, Vector{Particle}})
Execute the given `generated_code` (as returned by [`gen_code`](@ref)) on the given input particles.
The input particles should be sorted correctly into the dictionary to their according [`ParticleType`](@ref)s.
See also: [`gen_particles`](@ref)
"""
function execute(graph::DAG, input::Dict{ParticleType, Vector{Particle}})
(code, inputSymbols, outputSymbol) = gen_code(graph)
assignInputs = Vector{Expr}()
for (name, symbol) in inputSymbols
type = nothing
if startswith(name, "A")
type = A
elseif startswith(name, "B")
type = B
else
type = C
end
index = parse(Int, name[2:end])
push!(
assignInputs,
Meta.parse(
"$(symbol) = ParticleValue(Particle($(input[type][index]).P0, $(input[type][index]).P1, $(input[type][index]).P2, $(input[type][index]).P3, $(type)), 1.0)",
),
)
end
assignInputs = Expr(:block, assignInputs...)
eval(assignInputs)
eval(code)
eval(Meta.parse("result = $outputSymbol"))
return result
end

53
src/devices/cuda/impl.jl Normal file
View File

@ -0,0 +1,53 @@
using CUDA
"""
CUDAGPU <: AbstractGPU
Representation of a specific CUDA GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
"""
mutable struct CUDAGPU <: AbstractGPU
device::Any # TODO: what's the cuda device type?
cacheStrategy::CacheStrategy
FLOPS::Float64
end
push!(DEVICE_TYPES, CUDAGPU)
CACHE_STRATEGIES[CUDAGPU] = [LocalVariables()]
default_strategy(::Type{T}) where {T <: CUDAGPU} = LocalVariables()
function measure_device!(device::CUDAGPU; verbose::Bool)
if verbose
println("Measuring CUDA GPU $(device.device)")
end
# TODO implement
return nothing
end
"""
get_devices(deviceType::Type{T}; verbose::Bool) where {T <: CUDAGPU}
Return a Vector of [`CUDAGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
"""
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: CUDAGPU}
devices = Vector{AbstractDevice}()
if !CUDA.functional()
if verbose
println("CUDA is non-functional")
end
return devices
end
CUDADevices = CUDA.devices()
if verbose
println("Found $(length(CUDADevices)) CUDA devices")
end
for device in CUDADevices
push!(devices, CUDAGPU(device, default_strategy(CUDAGPU), -1))
end
return devices
end

23
src/devices/detect.jl Normal file
View File

@ -0,0 +1,23 @@
"""
get_machine_info(verbose::Bool)
Return the [`Machine`](@ref) currently running on. The parameter `verbose` defaults to true when interactive.
"""
function get_machine_info(; verbose::Bool = Base.is_interactive)
devices = Vector{AbstractDevice}()
for device in device_types()
devs = get_devices(device, verbose = verbose)
for dev in devs
push!(devices, dev)
end
end
noDevices = length(devices)
@assert noDevices > 0 "No devices were found, but at least one NUMA node should always be available!"
transferRates = Matrix{Float64}(undef, noDevices, noDevices)
fill!(transferRates, -1)
return Machine(devices, transferRates)
end

52
src/devices/impl.jl Normal file
View File

@ -0,0 +1,52 @@
"""
device_types()
Return a vector of available and implemented device types.
See also: [`DEVICE_TYPES`](@ref)
"""
function device_types()
return DEVICE_TYPES
end
"""
entry_device(machine::Machine)
Return the "entry" device, i.e., the device that starts CPU threads and GPU kernels, and takes input values and returns the output value.
"""
function entry_device(machine::Machine)
return machine.devices[1]
end
"""
strategies(t::Type{T}) where {T <: AbstractDevice}
Return a vector of available [`CacheStrategy`](@ref)s for the given [`AbstractDevice`](@ref).
The caching strategies are used in code generation.
"""
function strategies(t::Type{T}) where {T <: AbstractDevice}
if !haskey(CACHE_STRATEGIES, t)
error("Trying to get strategies for $T, but it has no strategies defined!")
end
return CACHE_STRATEGIES[t]
end
"""
cache_strategy(device::AbstractDevice)
Returns the cache strategy set for this device.
"""
function cache_strategy(device::AbstractDevice)
return device.cacheStrategy
end
"""
set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy)
Sets the device's cache strategy. After this call, [`cache_strategy`](@ref) should return `cacheStrategy` on the given device.
"""
function set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy)
device.cacheStrategy = cacheStrategy
return nothing
end

108
src/devices/interface.jl Normal file
View File

@ -0,0 +1,108 @@
"""
AbstractDevice
Abstract base type for every device, like GPUs, CPUs or any other compute devices.
Every implementation needs to implement various functions and needs a member `cacheStrategy`.
"""
abstract type AbstractDevice end
abstract type AbstractCPU <: AbstractDevice end
abstract type AbstractGPU <: AbstractDevice end
"""
Machine
A representation of a machine to execute on. Contains information about its architecture (CPUs, GPUs, maybe more). This representation can be used to make a more accurate cost prediction of a [`DAG`](@ref) state.
See also: [`Scheduler`](@ref)
"""
struct Machine
devices::Vector{AbstractDevice}
transferRates::Matrix{Float64}
end
"""
CacheStrategy
Abstract base type for caching strategies.
See also: [`strategies`](@ref)
"""
abstract type CacheStrategy end
"""
LocalVariables <: CacheStrategy
A caching strategy relying solely on local variables for every input and output.
Implements the [`CacheStrategy`](@ref) interface.
"""
struct LocalVariables <: CacheStrategy end
"""
Dictionary <: CacheStrategy
A caching strategy relying on a dictionary of Symbols to store every input and output.
Implements the [`CacheStrategy`](@ref) interface.
"""
struct Dictionary <: CacheStrategy end
"""
DEVICE_TYPES::Vector{Type}
Global vector of available and implemented device types. Each implementation of a [`AbstractDevice`](@ref) should add its concrete type to this vector.
See also: [`device_types`](@ref), [`get_devices`](@ref)
"""
DEVICE_TYPES = Vector{Type}()
"""
CACHE_STRATEGIES::Dict{Type{AbstractDevice}, Symbol}
Global dictionary of available caching strategies per device. Each implementation of [`AbstractDevice`](@ref) should add its available strategies to the dictionary.
See also: [`strategies`](@ref)
"""
CACHE_STRATEGIES = Dict{Type, Vector{CacheStrategy}}()
"""
default_strategy(deviceType::Type{T}) where {T <: AbstractDevice}
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns the default [`CacheStrategy`](@ref) to use on the given device type.
See also: [`cache_strategy`](@ref), [`set_cache_strategy`](@ref)
"""
function default_strategy end
"""
get_devices(t::Type{T}; verbose::Bool) where {T <: AbstractDevice}
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns a `Vector{Type}` of the devices for the given [`AbstractDevice`](@ref) Type available on the current machine.
"""
function get_devices end
"""
measure_device!(device::AbstractDevice; verbose::Bool)
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Measures the compute speed of the given device and writes into it.
"""
function measure_device! end
"""
gen_cache_init_code(device::AbstractDevice)
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref). Returns an `Expr` initializing this device's variable cache.
The strategy is a symbol
"""
function gen_cache_init_code end
"""
gen_access_expr(device::AbstractDevice, symbol::Symbol)
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref).
Return an `Expr` or `QuoteNode` accessing the variable identified by [`symbol`].
"""
function gen_access_expr end

22
src/devices/measure.jl Normal file
View File

@ -0,0 +1,22 @@
"""
measure_devices(machine::Machine; verbose::Bool)
Measure FLOPS, RAM, cache sizes and what other properties can be extracted for the devices in the given machine.
"""
function measure_devices!(machine::Machine; verbose::Bool = Base.is_interactive())
for device in machine.devices
measure_device!(device; verbose = verbose)
end
return nothing
end
"""
measure_transfer_rates(machine::Machine; verbose::Bool)
Measure the transfer rates between devices in the machine.
"""
function measure_transfer_rates!(machine::Machine; verbose::Bool = Base.is_interactive())
# TODO implement
return nothing
end

96
src/devices/numa/impl.jl Normal file
View File

@ -0,0 +1,96 @@
using NumaAllocators
"""
NumaNode <: AbstractCPU
Representation of a specific CPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
"""
mutable struct NumaNode <: AbstractCPU
numaId::UInt16
threads::UInt16
cacheStrategy::CacheStrategy
FLOPS::Float64
id::UUID
end
push!(DEVICE_TYPES, NumaNode)
CACHE_STRATEGIES[NumaNode] = [LocalVariables()]
default_strategy(::Type{T}) where {T <: NumaNode} = LocalVariables()
function measure_device!(device::NumaNode; verbose::Bool)
if verbose
println("Measuring Numa Node $(device.numaId)")
end
# TODO implement
return nothing
end
"""
get_devices(deviceType::Type{T}; verbose::Bool) where {T <: NumaNode}
Return a Vector of [`NumaNode`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
"""
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: NumaNode}
devices = Vector{AbstractDevice}()
noNumaNodes = highest_numa_node()
if (verbose)
println("Found $(noNumaNodes + 1) NUMA nodes")
end
for i in 0:noNumaNodes
push!(devices, NumaNode(i, 1, default_strategy(NumaNode), -1, UUIDs.uuid1(rng[1])))
end
return devices
end
"""
gen_cache_init_code(device::NumaNode)
Generate code for initializing the [`LocalVariables`](@ref) strategy on a [`NumaNode`](@ref).
"""
function gen_cache_init_code(device::NumaNode)
if typeof(device.cacheStrategy) <: LocalVariables
# don't need to initialize anything
return Expr(:block)
elseif typeof(device.cacheStrategy) <: Dictionary
return Meta.parse("cache_$(to_var_name(device.id)) = Dict{Symbol, Any}()")
# TODO: sizehint?
end
return error("Unimplemented cache strategy \"$(device.cacheStrategy)\" for device \"$(device)\"")
end
"""
gen_access_expr(device::NumaNode, symbol::Symbol)
Generate code to access the variable designated by `symbol` on a [`NumaNode`](@ref), using the [`CacheStrategy`](@ref) set in the device.
"""
function gen_access_expr(device::NumaNode, symbol::Symbol)
return _gen_access_expr(device, device.cacheStrategy, symbol)
end
"""
_gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol)
Internal function for dispatch, used in [`gen_access_expr`](@ref).
"""
function _gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol)
s = Symbol("data_$symbol")
quoteNode = Meta.parse(":($s)")
return quoteNode
end
"""
_gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol)
Internal function for dispatch, used in [`gen_access_expr`](@ref).
"""
function _gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol)
accessStr = ":(cache_$(to_var_name(device.id))[:$symbol])"
quoteNode = Meta.parse(accessStr)
return quoteNode
end

View File

@ -0,0 +1,53 @@
using oneAPI
"""
oneAPIGPU <: AbstractGPU
Representation of a specific Intel GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
"""
mutable struct oneAPIGPU <: AbstractGPU
device::Any
cacheStrategy::CacheStrategy
FLOPS::Float64
end
push!(DEVICE_TYPES, oneAPIGPU)
CACHE_STRATEGIES[oneAPIGPU] = [LocalVariables()]
default_strategy(::Type{T}) where {T <: oneAPIGPU} = LocalVariables()
function measure_device!(device::oneAPIGPU; verbose::Bool)
if verbose
println("Measuring oneAPI GPU $(device.device)")
end
# TODO implement
return nothing
end
"""
get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: oneAPIGPU}
Return a Vector of [`oneAPIGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
"""
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: oneAPIGPU}
devices = Vector{AbstractDevice}()
if !oneAPI.functional()
if verbose
println("oneAPI is non-functional")
end
return devices
end
oneAPIDevices = oneAPI.devices()
if verbose
println("Found $(length(oneAPIDevices)) oneAPI devices")
end
for device in oneAPIDevices
push!(devices, oneAPIGPU(device, default_strategy(oneAPIGPU), -1))
end
return devices
end

53
src/devices/rocm/impl.jl Normal file
View File

@ -0,0 +1,53 @@
using AMDGPU
"""
ROCmGPU <: AbstractGPU
Representation of a specific AMD GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
"""
mutable struct ROCmGPU <: AbstractGPU
device::Any
cacheStrategy::CacheStrategy
FLOPS::Float64
end
push!(DEVICE_TYPES, ROCmGPU)
CACHE_STRATEGIES[ROCmGPU] = [LocalVariables()]
default_strategy(::Type{T}) where {T <: ROCmGPU} = LocalVariables()
function measure_device!(device::ROCmGPU; verbose::Bool)
if verbose
println("Measuring ROCm GPU $(device.device)")
end
# TODO implement
return nothing
end
"""
get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: ROCmGPU}
Return a Vector of [`ROCmGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
"""
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: ROCmGPU}
devices = Vector{AbstractDevice}()
if !AMDGPU.functional()
if verbose
println("AMDGPU is non-functional")
end
return devices
end
AMDDevices = AMDGPU.devices()
if verbose
println("Found $(length(AMDDevices)) AMD devices")
end
for device in AMDDevices
push!(devices, ROCmGPU(device, default_strategy(ROCmGPU), -1))
end
return devices
end

View File

@ -6,6 +6,6 @@ Pretty-print a [`Diff`](@ref). Called via print, println and co.
function show(io::IO, diff::Diff)
print(io, "Nodes: ")
print(io, length(diff.addedNodes) + length(diff.removedNodes))
print(io, " Edges: ")
print(io, ", Edges: ")
return print(io, length(diff.addedEdges) + length(diff.removedEdges))
end

View File

@ -4,8 +4,8 @@
A named tuple representing a difference of added and removed nodes and edges on a [`DAG`](@ref).
"""
const Diff = NamedTuple{
(:addedNodes, :removedNodes, :addedEdges, :removedEdges),
Tuple{Vector{Node}, Vector{Node}, Vector{Edge}, Vector{Edge}},
(:addedNodes, :removedNodes, :addedEdges, :removedEdges, :updatedChildren),
Tuple{Vector{Node}, Vector{Node}, Vector{Edge}, Vector{Edge}, Vector{Tuple{Node, AbstractTask}}},
}
function Diff()
@ -14,5 +14,8 @@ function Diff()
removedNodes = Vector{Node}(),
addedEdges = Vector{Edge}(),
removedEdges = Vector{Edge}(),
# children were updated in the task, updatedChildren[x][2] is the task before the update
updatedChildren = Vector{Tuple{Node, AbstractTask}}(),
)::Diff
end

View File

@ -38,8 +38,7 @@ end
Return `true` if [`pop_operation!`](@ref) is possible, `false` otherwise.
"""
can_pop(graph::DAG) =
!isempty(graph.operationsToApply) || !isempty(graph.appliedOperations)
can_pop(graph::DAG) = !isempty(graph.operationsToApply) || !isempty(graph.appliedOperations)
"""
reset_graph!(graph::DAG)

View File

@ -15,12 +15,7 @@ Insert the node into the graph.
See also: [`remove_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
"""
function insert_node!(
graph::DAG,
node::Node,
track = true,
invalidate_cache = true,
)
function insert_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
# 1: mute
push!(graph.nodes, node)
@ -50,14 +45,8 @@ Insert the edge between node1 (child) and node2 (parent) into the graph.
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`remove_edge!`](@ref)
"""
function insert_edge!(
graph::DAG,
node1::Node,
node2::Node,
track = true,
invalidate_cache = true,
)
# @assert (node2 ∉ node1.parents) && (node1 ∉ node2.children) "Edge to insert already exists"
function insert_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
@assert (node2 node1.parents) && (node1 node2.children) "Edge to insert already exists"
# 1: mute
# edge points from child to parent
@ -95,13 +84,8 @@ Remove the node from the graph.
See also: [`insert_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
"""
function remove_node!(
graph::DAG,
node::Node,
track = true,
invalidate_cache = true,
)
# @assert node in graph.nodes "Trying to remove a node that's not in the graph"
function remove_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
@assert node in graph.nodes "Trying to remove a node that's not in the graph"
# 1: mute
delete!(graph.nodes, node)
@ -134,13 +118,7 @@ Remove the edge between node1 (child) and node2 (parent) into the graph.
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`insert_edge!`](@ref)
"""
function remove_edge!(
graph::DAG,
node1::Node,
node2::Node,
track = true,
invalidate_cache = true,
)
function remove_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
# 1: mute
pre_length1 = length(node1.parents)
pre_length2 = length(node2.children)
@ -149,15 +127,15 @@ function remove_edge!(
filter!(x -> x != node2, node1.parents)
filter!(x -> x != node1, node2.children)
#=@assert begin
removed = pre_length1 - length(node1.parents)
removed <= 1
end "removed more than one node from node1's parents"=#
@assert begin
removed = pre_length1 - length(node1.parents)
removed <= 1
end "removed more than one node from node1's parents"
#=@assert begin
removed = pre_length2 - length(node2.children)
removed <= 1
end "removed more than one node from node2's children"=#
@assert begin
removed = pre_length2 - length(node2.children)
removed <= 1
end "removed more than one node from node2's children"
# 2: keep track
if (track)
@ -181,6 +159,66 @@ function remove_edge!(
return nothing
end
function replace_children!(task::FusedComputeTask, before, after)
replacedIn1 = length(findall(x -> x == before, task.t1_inputs))
replacedIn2 = length(findall(x -> x == before, task.t2_inputs))
@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
replace!(task.t1_inputs, before => after)
replace!(task.t2_inputs, before => after)
# recursively descend down the tree, but only in the tasks where we're replacing things
if replacedIn1 > 0
replace_children!(task.first_task, before, after)
end
if replacedIn2 > 0
replace_children!(task.second_task, before, after)
end
return nothing
end
function replace_children!(task::AbstractTask, before, after)
return nothing
end
function update_child!(graph::DAG, n::Node, child_before::Symbol, child_after::Symbol; track = true)
# only need to update fused compute tasks
if !(typeof(n.task) <: FusedComputeTask)
return nothing
end
taskBefore = copy(n.task)
if !((child_before in n.task.t1_inputs) || (child_before in n.task.t2_inputs))
println("------------------ Nothing to replace!! ------------------")
child_ids = Vector{String}()
for child in n.children
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
replace_children!(n.task, child_before, child_after)
if !((child_after in n.task.t1_inputs) || (child_after in n.task.t2_inputs))
println("------------------ Did not replace anything!! ------------------")
child_ids = Vector{String}()
for child in n.children
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
# keep track
if (track)
push!(graph.diff.updatedChildren, (n, taskBefore))
end
end
"""
get_snapshot_diff(graph::DAG)

View File

@ -62,9 +62,5 @@ function show(io::IO, graph::DAG)
properties = get_properties(graph)
println(io, " Total Compute Effort: ", properties.computeEffort)
println(io, " Total Data Transfer: ", properties.data)
return println(
io,
" Total Compute Intensity: ",
properties.computeIntensity,
)
return println(io, " Total Compute Intensity: ", properties.computeIntensity)
end

View File

@ -34,6 +34,7 @@ end
Return a vector of the graph's entry nodes.
"""
function get_entry_nodes(graph::DAG)
apply_all!(graph)
result = Vector{Node}()
for node in graph.nodes
if (is_entry_node(node))

View File

@ -17,7 +17,7 @@ end
The representation of the graph as a set of [`Node`](@ref)s.
A DAG can be loaded using the appropriate parse function, e.g. [`parse_abc`](@ref).
A DAG can be loaded using the appropriate parse_dag function, e.g. [`parse_dag`](@ref).
[`Operation`](@ref)s can be applied on it using [`push_operation!`](@ref) and reverted using [`pop_operation!`](@ref) like a stack.
To get the set of possible operations, use [`get_operations`](@ref).
@ -52,11 +52,7 @@ end
Construct and return an empty [`PossibleOperations`](@ref) object.
"""
function PossibleOperations()
return PossibleOperations(
Set{NodeFusion}(),
Set{NodeReduction}(),
Set{NodeSplit}(),
)
return PossibleOperations(Set{NodeFusion}(), Set{NodeReduction}(), Set{NodeSplit}())
end
"""

View File

@ -59,3 +59,19 @@ function is_valid(graph::DAG)
return true
end
"""
is_scheduled(graph::DAG)
Validate that the entire graph has been scheduled, i.e., every [`ComputeTaskNode`](@ref) has its `.device` set.
"""
function is_scheduled(graph::DAG)
for node in graph.nodes
if (node isa DataTaskNode)
continue
end
@assert !ismissing(node.device)
end
return true
end

View File

@ -45,6 +45,12 @@ For valid inputs, both input particles should have the same momenta at this poin
12 FLOP.
"""
function compute(::ComputeTaskS2, data1::ParticleValue, data2::ParticleValue)
#=
@assert isapprox(abs(data1.p.momentum.E), abs(data2.p.momentum.E), rtol = 0.001, atol = sqrt(eps())) "E: $(data1.p.momentum.E) vs. $(data2.p.momentum.E)"
@assert isapprox(data1.p.momentum.px, -data2.p.momentum.px, rtol = 0.001, atol = sqrt(eps())) "px: $(data1.p.momentum.px) vs. $(data2.p.momentum.px)"
@assert isapprox(data1.p.momentum.py, -data2.p.momentum.py, rtol = 0.001, atol = sqrt(eps())) "py: $(data1.p.momentum.py) vs. $(data2.p.momentum.py)"
@assert isapprox(data1.p.momentum.pz, -data2.p.momentum.pz, rtol = 0.001, atol = sqrt(eps())) "pz: $(data1.p.momentum.pz) vs. $(data2.p.momentum.pz)"
=#
return data1.v * inner_edge(data1.p) * data2.v
end
@ -71,186 +77,78 @@ function compute(::ComputeTaskSum, data::Vector{Float64})
end
"""
compute(t::FusedComputeTask, data)
get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
Generate and return code evaluating [`ComputeTaskP`](@ref) on `inSyms`, providing the output on `outSym`.
"""
function compute(t::FusedComputeTask, data)
@assert false "This is not implemented and should never be called"
function get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskP(), $(in[1]))")
end
"""
get_expression(::ComputeTaskP, inSymbol::Symbol, outSymbol::Symbol)
get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate and return code evaluating [`ComputeTaskP`](@ref) on `inSymbol`, providing the output on `outSymbol`.
Generate code evaluating [`ComputeTaskU`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
"""
function get_expression(::ComputeTaskP, inSymbol::Symbol, outSymbol::Symbol)
return Meta.parse("$outSymbol = compute(ComputeTaskP(), $inSymbol)")
function get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskU(), $(in[1]))")
end
"""
get_expression(::ComputeTaskU, inSymbol::Symbol, outSymbol::Symbol)
get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskU`](@ref) on `inSymbol`, providing the output on `outSymbol`.
`inSymbol` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskV`](@ref) on `inSyms`, providing the output on `outSym`.
`inSym[1]` and `inSym[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
"""
function get_expression(::ComputeTaskU, inSymbol::Symbol, outSymbol::Symbol)
return Meta.parse("$outSymbol = compute(ComputeTaskU(), $inSymbol)")
function get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskV(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskV, inSymbol1::Symbol, inSymbol2::Symbol, outSymbol::Symbol)
get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskV`](@ref) on `inSymbol1` and `inSymbol2`, providing the output on `outSymbol`.
`inSymbol1` and `inSymbol2` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskS2`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms[1]` and `inSyms[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type `Float64`.
"""
function get_expression(
::ComputeTaskV,
inSymbol1::Symbol,
inSymbol2::Symbol,
outSymbol::Symbol,
)
return Meta.parse(
"$outSymbol = compute(ComputeTaskV(), $inSymbol1, $inSymbol2)",
)
function get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskS2(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskS2, inSymbol1::Symbol, inSymbol2::Symbol, outSymbol::Symbol)
get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskS2`](@ref) on `inSymbol1` and `inSymbol2`, providing the output on `outSymbol`.
`inSymbol1` and `inSymbol2` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type `Float64`.
Generate code evaluating [`ComputeTaskS1`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
"""
function get_expression(
::ComputeTaskS2,
inSymbol1::Symbol,
inSymbol2::Symbol,
outSymbol::Symbol,
)
return Meta.parse(
"$outSymbol = compute(ComputeTaskS2(), $inSymbol1, $inSymbol2)",
)
function get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskS1(), $(in[1]))")
end
"""
get_expression(::ComputeTaskS1, inSymbol::Symbol, outSymbol::Symbol)
get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskS1`](@ref) on `inSymbol`, providing the output on `outSymbol`.
`inSymbol` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskSum`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
"""
function get_expression(::ComputeTaskS1, inSymbol::Symbol, outSymbol::Symbol)
return Meta.parse("$outSymbol = compute(ComputeTaskS1(), $inSymbol)")
end
"""
get_expression(::ComputeTaskSum, inSymbols::Vector{Symbol}, outSymbol::Symbol)
Generate code evaluating [`ComputeTaskSum`](@ref) on `inSymbols`, providing the output on `outSymbol`.
`inSymbols` should be of type [`Float64`], `outSymbol` will be of type [`Float64`].
"""
function get_expression(
::ComputeTaskSum,
inSymbols::Vector{Symbol},
outSymbol::Symbol,
)
return quote
$outSymbol = compute(ComputeTaskSum(), [$(inSymbols...)])
end
end
"""
get_expression(t::FusedComputeTask, inSymbols::Vector{Symbol}, outSymbol::Symbol)
Generate code evaluating a [`FusedComputeTask`](@ref) on `inSymbols`, providing the output on `outSymbol`.
`inSymbols` should be of the correct types and may be heterogeneous. `outSymbol` will be of the type of the output of `T2` of t.
"""
function get_expression(
t::FusedComputeTask,
inSymbols::Vector{Symbol},
outSymbol::Symbol,
)
(T1, T2) = get_types(t)
c1 = children(T1())
c2 = children(T2())
expr1 = nothing
expr2 = nothing
# TODO need to figure out how to know which inputs belong to which subtask
# since we order the vectors with the child nodes we can't just split
if (c1 == 1)
expr1 = get_expression(T1(), inSymbols[begin], :intermediate)
elseif (c1 == 2)
expr1 =
get_expression(T1(), inSymbols[begin], inSymbols[2], :intermediate)
else
expr1 = get_expression(T1(), inSymbols[begin:c1], :intermediate)
end
if (c2 == 1)
expr2 = get_expression(T2(), :intermediate, outSymbol)
elseif c2 == 2
expr2 =
get_expression(T2(), :intermediate, inSymbols[c1 + 1], outSymbol)
else
expr2 = get_expression(
T2(),
:intermediate * inSymbols[(c1 + 1):end],
outSymbol,
)
end
return Expr(:block, expr1, expr2)
end
"""
get_expression(node::ComputeTaskNode)
Generate and return code for a given [`ComputeTaskNode`](@ref).
"""
function get_expression(node::ComputeTaskNode)
t = typeof(node.task)
@assert length(node.children) == children(node.task) || t <: ComputeTaskSum
if (t <: ComputeTaskU || t <: ComputeTaskP || t <: ComputeTaskS1) # single input
symbolIn = Symbol("data_$(to_var_name(node.children[1].id))")
symbolOut = Symbol("data_$(to_var_name(node.id))")
return get_expression(t(), symbolIn, symbolOut)
elseif (t <: ComputeTaskS2 || t <: ComputeTaskV) # double input
symbolIn1 = Symbol("data_$(to_var_name(node.children[1].id))")
symbolIn2 = Symbol("data_$(to_var_name(node.children[2].id))")
symbolOut = Symbol("data_$(to_var_name(node.id))")
return get_expression(t(), symbolIn1, symbolIn2, symbolOut)
elseif (t <: ComputeTaskSum || t <: FusedComputeTask) # vector input
inSymbols = Vector{Symbol}()
for child in node.children
push!(inSymbols, Symbol("data_$(to_var_name(child.id))"))
end
outSymbol = Symbol("data_$(to_var_name(node.id))")
return get_expression(t(), inSymbols, outSymbol)
else
error("Unknown compute task")
end
end
"""
get_expression(node::DataTaskNode)
Generate and return code for a given [`DataTaskNode`](@ref).
"""
function get_expression(node::DataTaskNode)
# TODO: do things to transport data from/to gpu, between numa nodes, etc.
@assert length(node.children) <= 1
inSymbol = nothing
if (length(node.children) == 1)
inSymbol = Symbol("data_$(to_var_name(node.children[1].id))")
else
inSymbol = Symbol("data_$(to_var_name(node.id))_in")
end
outSymbol = Symbol("data_$(to_var_name(node.id))")
dataTransportExp = Meta.parse("$outSymbol = $inSymbol")
return dataTransportExp
function get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector, outExpr)
in = eval.(inExprs)
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskSum(), [$(unroll_symbol_vector(in))])")
end

View File

@ -1,74 +1,198 @@
using QEDbase
using Random
using Roots
using ForwardDiff
ComputeTaskSum() = ComputeTaskSum(0)
"""
Particle(rng)
gen_process_input(processDescription::ABCProcessDescription)
Return a randomly generated particle.
Return a ProcessInput of randomly generated [`ABCParticle`](@ref)s from a [`ABCProcessDescription`](@ref). The process description can be created manually or parsed from a string using [`parse_process`](@ref).
Note: This uses RAMBO to create a valid process with conservation of momentum and energy.
"""
function Particle(rng, type::ParticleType)
function gen_process_input(processDescription::ABCProcessDescription)
inParticleTypes = keys(processDescription.inParticles)
outParticleTypes = keys(processDescription.outParticles)
p1 = rand(rng, Float64)
p2 = rand(rng, Float64)
p3 = rand(rng, Float64)
m = mass(type)
# keep the momenta of the particles on-shell
p4 = sqrt(p1^2 + p2^2 + p3^2 + m^2)
return Particle(p1, p2, p3, p4, type)
end
"""
gen_particles(n::Int)
Return a Vector of `n` randomly generated [`Particle`](@ref)s.
Note: This does not take into account the preservation of momenta required for an actual valid process!
"""
function gen_particles(ns::Dict{ParticleType, Int})
particles = Dict{ParticleType, Vector{Particle}}()
rng = MersenneTwister(0)
if ns == Dict((A => 2), (B => 2))
rho = 1.0
omega = rand(rng, Float64)
theta = rand(rng, Float64) * π
phi = rand(rng, Float64) * π
particles[A] = Vector{Particle}()
particles[B] = Vector{Particle}()
push!(particles[A], Particle(omega, 0, 0, omega, A))
push!(particles[B], Particle(omega, 0, 0, -omega, B))
push!(
particles[A],
Particle(
omega,
rho * cos(theta) * cos(phi),
rho * cos(theta) * sin(phi),
rho * sin(theta),
A,
),
)
push!(
particles[B],
Particle(
omega,
-rho * cos(theta) * cos(phi),
-rho * cos(theta) * sin(phi),
-rho * sin(theta),
B,
),
)
return particles
end
for (type, n) in ns
particles[type] = Vector{Particle}()
for i in 1:n
push!(particles[type], Particle(rng, type))
massSum = 0
inputMasses = Vector{Float64}()
for (particle, n) in processDescription.inParticles
for _ in 1:n
massSum += mass(particle)
push!(inputMasses, mass(particle))
end
end
return particles
outputMasses = Vector{Float64}()
for (particle, n) in processDescription.outParticles
for _ in 1:n
massSum += mass(particle)
push!(outputMasses, mass(particle))
end
end
# add some extra random mass to allow for some momentum
massSum += rand(rng[threadid()]) * (length(inputMasses) + length(outputMasses))
inputParticles = Vector{ABCParticle}()
initialMomenta = generate_initial_moms(massSum, inputMasses)
index = 1
for (particle, n) in processDescription.inParticles
for _ in 1:n
mom = initialMomenta[index]
push!(inputParticles, particle(mom))
index += 1
end
end
outputParticles = Vector{ABCParticle}()
final_momenta = generate_physical_massive_moms(rng[threadid()], massSum, outputMasses)
index = 1
for (particle, n) in processDescription.outParticles
for _ in 1:n
mom = final_momenta[index]
push!(outputParticles, particle(SFourMomentum(-mom.E, mom.px, mom.py, mom.pz)))
index += 1
end
end
processInput = ABCProcessInput(processDescription, inputParticles, outputParticles)
return return processInput
end
####################
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
# use qedphasespaces directly once released
#
# quick and dirty implementation of the RAMBO algorithm
#
# reference:
# * https://cds.cern.ch/record/164736/files/198601282.pdf
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
####################
function generate_initial_moms(ss, masses)
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
rho1 = sqrt(E1^2 - masses[1]^2)
rho2 = sqrt(E2^2 - masses[2]^2)
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
end
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
function _transform_uni_to_mom(u1, u2, u3, u4)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return SFourMomentum(q0, qx, qy, qz)
end
function _transform_uni_to_mom!(uni_mom, dest)
u1, u2, u3, u4 = Tuple(uni_mom)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return dest = SFourMomentum(q0, qx, qy, qz)
end
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
function generate_massless_moms(rng, n::Int)
a = Vector{SFourMomentum}(undef, n)
rand!(rng, a)
return map(_transform_uni_to_mom, a)
end
function generate_physical_massless_moms(rng, ss, n)
r_moms = generate_massless_moms(rng, n)
Q = sum(r_moms)
M = sqrt(Q * Q)
fac = -1 / M
Qx = getX(Q)
Qy = getY(Q)
Qz = getZ(Q)
bx = fac * Qx
by = fac * Qy
bz = fac * Qz
gamma = getT(Q) / M
a = 1 / (1 + gamma)
x = ss / M
i = 1
while i <= n
mom = r_moms[i]
mom0 = getT(mom)
mom1 = getX(mom)
mom2 = getY(mom)
mom3 = getZ(mom)
bq = bx * mom1 + by * mom2 + bz * mom3
p0 = x * (gamma * mom0 + bq)
px = x * (mom1 + bx * mom0 + a * bq * bx)
py = x * (mom2 + by * mom0 + a * bq * by)
pz = x * (mom3 + bz * mom0 + a * bq * bz)
r_moms[i] = SFourMomentum(p0, px, py, pz)
i += 1
end
return r_moms
end
function _to_be_solved(xi, masses, p0s, ss)
sum = 0.0
for (i, E) in enumerate(p0s)
sum += sqrt(masses[i]^2 + xi^2 * E^2)
end
return sum - ss
end
function _build_massive_momenta(xi, masses, massless_moms)
vec = SFourMomentum[]
i = 1
while i <= length(massless_moms)
massless_mom = massless_moms[i]
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
kx = xi * getX(massless_mom)
ky = xi * getY(massless_mom)
kz = xi * getZ(massless_mom)
push!(vec, SFourMomentum(k0, kx, ky, kz))
i += 1
end
return vec
end
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
n = length(masses)
massless_moms = generate_physical_massless_moms(rng, ss, n)
energies = getT.(massless_moms)
f = x -> _to_be_solved(x, masses, energies, ss)
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
return _build_massive_momenta(xi, masses, massless_moms)
end

View File

@ -32,13 +32,13 @@ function parse_edges(input::AbstractString)
end
"""
parse_abc(filename::String; verbose::Bool = false)
parse_dag(filename::String, model::ABCModel; verbose::Bool = false)
Read an abc-model process from the given file. If `verbose` is set to true, print some progress information to stdout.
Returns a valid [`DAG`](@ref).
"""
function parse_abc(filename::String, verbose::Bool = false)
function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = false)
file = open(filename, "r")
if (verbose)
@ -63,10 +63,9 @@ function parse_abc(filename::String, verbose::Bool = false)
end
sizehint!(graph.nodes, estimate_no_nodes)
sum_node = insert_node!(graph, make_node(ComputeTaskSum()), false, false)
global_data_out =
insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), false, false)
insert_edge!(graph, sum_node, global_data_out, false, false)
sum_node = insert_node!(graph, make_node(ComputeTaskSum(0)), track = false, invalidate_cache = false)
global_data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, sum_node, global_data_out, track = false, invalidate_cache = false)
# remember the data out nodes for connection
dataOutNodes = Dict()
@ -81,10 +80,7 @@ function parse_abc(filename::String, verbose::Bool = false)
noNodes += 1
if (noNodes % 100 == 0)
if (verbose)
percent = string(
round(100.0 * noNodes / nodesToRead, digits = 2),
"%",
)
percent = string(round(100.0 * noNodes / nodesToRead, digits = 2), "%")
print("\rReading Nodes... $percent")
end
end
@ -93,30 +89,20 @@ function parse_abc(filename::String, verbose::Bool = false)
data_in = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE), string(node)),
false,
false,
track = false,
invalidate_cache = false,
) # read particle data node
compute_P =
insert_node!(graph, make_node(ComputeTaskP()), false, false) # compute P node
data_Pu = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
) # transfer data from P to u (one ParticleValue object)
compute_u =
insert_node!(graph, make_node(ComputeTaskU()), false, false) # compute U node
data_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
) # transfer data out from u (one ParticleValue object)
compute_P = insert_node!(graph, make_node(ComputeTaskP()), track = false, invalidate_cache = false) # compute P node
data_Pu =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data from P to u (one ParticleValue object)
compute_u = insert_node!(graph, make_node(ComputeTaskU()), track = false, invalidate_cache = false) # compute U node
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ParticleValue object)
insert_edge!(graph, data_in, compute_P, false, false)
insert_edge!(graph, compute_P, data_Pu, false, false)
insert_edge!(graph, data_Pu, compute_u, false, false)
insert_edge!(graph, compute_u, data_out, false, false)
insert_edge!(graph, data_in, compute_P, track = false, invalidate_cache = false)
insert_edge!(graph, compute_P, data_Pu, track = false, invalidate_cache = false)
insert_edge!(graph, data_Pu, compute_u, track = false, invalidate_cache = false)
insert_edge!(graph, compute_u, data_out, track = false, invalidate_cache = false)
# remember the data_out node for future edges
dataOutNodes[node] = data_out
@ -126,63 +112,48 @@ function parse_abc(filename::String, verbose::Bool = false)
in1 = capt.captures[1]
in2 = capt.captures[2]
compute_v =
insert_node!(graph, make_node(ComputeTaskV()), false, false)
data_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
)
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
if (occursin(regex_c, in1))
# put an S node after this input
compute_S = insert_node!(
graph,
make_node(ComputeTaskS1()),
false,
false,
)
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
data_S_v = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
track = false,
invalidate_cache = false,
)
insert_edge!(graph, dataOutNodes[in1], compute_S, false, false)
insert_edge!(graph, compute_S, data_S_v, false, false)
insert_edge!(graph, dataOutNodes[in1], compute_S, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S, data_S_v, track = false, invalidate_cache = false)
insert_edge!(graph, data_S_v, compute_v, false, false)
insert_edge!(graph, data_S_v, compute_v, track = false, invalidate_cache = false)
else
insert_edge!(graph, dataOutNodes[in1], compute_v, false, false)
insert_edge!(graph, dataOutNodes[in1], compute_v, track = false, invalidate_cache = false)
end
if (occursin(regex_c, in2))
# i think the current generator only puts the combined particles in the first space, so this case might never be entered
# put an S node after this input
compute_S = insert_node!(
graph,
make_node(ComputeTaskS1()),
false,
false,
)
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
data_S_v = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
track = false,
invalidate_cache = false,
)
insert_edge!(graph, dataOutNodes[in2], compute_S, false, false)
insert_edge!(graph, compute_S, data_S_v, false, false)
insert_edge!(graph, dataOutNodes[in2], compute_S, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S, data_S_v, track = false, invalidate_cache = false)
insert_edge!(graph, data_S_v, compute_v, false, false)
insert_edge!(graph, data_S_v, compute_v, track = false, invalidate_cache = false)
else
insert_edge!(graph, dataOutNodes[in2], compute_v, false, false)
insert_edge!(graph, dataOutNodes[in2], compute_v, track = false, invalidate_cache = false)
end
insert_edge!(graph, compute_v, data_out, false, false)
insert_edge!(graph, compute_v, data_out, track = false, invalidate_cache = false)
dataOutNodes[node] = data_out
elseif occursin(regex_m, node)
@ -193,43 +164,31 @@ function parse_abc(filename::String, verbose::Bool = false)
in3 = capt.captures[3]
# in2 + in3 with a v
compute_v =
insert_node!(graph, make_node(ComputeTaskV()), false, false)
data_v = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
false,
false,
)
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
data_v =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, dataOutNodes[in2], compute_v, false, false)
insert_edge!(graph, dataOutNodes[in3], compute_v, false, false)
insert_edge!(graph, compute_v, data_v, false, false)
insert_edge!(graph, dataOutNodes[in2], compute_v, track = false, invalidate_cache = false)
insert_edge!(graph, dataOutNodes[in3], compute_v, track = false, invalidate_cache = false)
insert_edge!(graph, compute_v, data_v, track = false, invalidate_cache = false)
# combine with the v of the combined other input
compute_S2 =
insert_node!(graph, make_node(ComputeTaskS2()), false, false)
data_out = insert_node!(
graph,
make_node(DataTask(FLOAT_SIZE)),
false,
false,
) # output of a S2 task is only a float
compute_S2 = insert_node!(graph, make_node(ComputeTaskS2()), track = false, invalidate_cache = false)
data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false) # output of a S2 task is only a float
insert_edge!(graph, data_v, compute_S2, false, false)
insert_edge!(graph, dataOutNodes[in1], compute_S2, false, false)
insert_edge!(graph, compute_S2, data_out, false, false)
insert_edge!(graph, data_v, compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, dataOutNodes[in1], compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S2, data_out, track = false, invalidate_cache = false)
insert_edge!(graph, data_out, sum_node, false, false)
insert_edge!(graph, data_out, sum_node, track = false, invalidate_cache = false)
add_child!(sum_node.task)
elseif occursin(regex_plus, node)
if (verbose)
println("\rReading Nodes Complete ")
println("Added ", length(graph.nodes), " nodes")
end
else
@assert false (
"Unknown node '$node' while reading from file $filename"
)
@assert false ("Unknown node '$node' while reading from file $filename")
end
end
@ -244,6 +203,46 @@ function parse_abc(filename::String, verbose::Bool = false)
if (verbose)
println("Done")
end
# don't actually need to read the edges
return graph
end
"""
parse_process(string::AbstractString, model::ABCModel)
Parse a string representation of a process, such as "AB->ABBB" into the corresponding [`ABCProcessDescription`](@ref).
"""
function parse_process(str::AbstractString, model::ABCModel)
inParticles = Dict{Type, Int}()
outParticles = Dict{Type, Int}()
if !(contains(str, "->"))
throw("Did not find -> while parsing process \"$str\"")
end
(inStr, outStr) = split(str, "->")
if (isempty(inStr) || isempty(outStr))
throw("Process (\"$str\") input or output part is empty!")
end
for t in types(model)
inCount = count(x -> x == String(t)[1], inStr)
outCount = count(x -> x == String(t)[1], outStr)
if inCount != 0
inParticles[t] = inCount
end
if outCount != 0
outParticles[t] = outCount
end
end
if length(inStr) != sum(values(inParticles))
throw("Encountered unknown characters in the input part of process \"$str\"")
elseif length(outStr) != sum(values(outParticles))
throw("Encountered unknown characters in the output part of process \"$str\"")
end
return ABCProcessDescription(inParticles, outParticles)
end

View File

@ -1,99 +1,140 @@
"""
ParticleType
using QEDbase
A Particle Type in the ABC Model as an enum, with types `A`, `B` and `C`.
"""
@enum ParticleType A = 1 B = 2 C = 3
ABCModel <: AbstractPhysicsModel
Singleton definition for identification of the ABC-Model.
"""
struct ABCModel <: AbstractPhysicsModel end
"""
ABCParticle
Base type for all particles in the [`ABCModel`](@ref).
"""
abstract type ABCParticle <: AbstractParticle end
"""
ParticleA <: ABCParticle
An 'A' particle in the ABC Model.
"""
struct ParticleA <: ABCParticle
momentum::SFourMomentum
end
"""
ParticleB <: ABCParticle
A 'B' particle in the ABC Model.
"""
struct ParticleB <: ABCParticle
momentum::SFourMomentum
end
"""
ParticleC <: ABCParticle
A 'C' particle in the ABC Model.
"""
struct ParticleC <: ABCParticle
momentum::SFourMomentum
end
"""
ABCProcessDescription <: AbstractProcessDescription
A description of a process in the ABC-Model. Contains the input and output particles.
See also: [`in_particles`](@ref), [`out_particles`](@ref), [`parse_process`](@ref)
"""
struct ABCProcessDescription <: AbstractProcessDescription
inParticles::Dict{Type, Int}
outParticles::Dict{Type, Int}
end
"""
ABCProcessInput <: AbstractProcessInput
Input for a ABC Process. Contains the [`ABCProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
See also: [`gen_process_input`](@ref)
"""
struct ABCProcessInput <: AbstractProcessInput
process::ABCProcessDescription
inParticles::Vector{ABCParticle}
outParticles::Vector{ABCParticle}
end
"""
PARTICLE_MASSES
A constant dictionary containing the masses of the different [`ParticleType`](@ref)s.
A constant dictionary containing the masses of the different [`ABCParticle`](@ref)s.
"""
const PARTICLE_MASSES =
Dict{ParticleType, Float64}(A => 1.0, B => 1.0, C => 0.0)
const PARTICLE_MASSES = Dict{Type, Float64}(ParticleA => 1.0, ParticleB => 1.0, ParticleC => 0.0)
"""
Particle
A struct describing a particle of the ABC-Model. It has the 4 momentum parts P0...P3 and a [`ParticleType`](@ref).
`sizeof(Particle())` = 40 Byte
"""
struct Particle
P0::Float64
P1::Float64
P2::Float64
P3::Float64
type::ParticleType
end
"""
ParticleValue
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated.
`sizeof(ParticleValue())` = 48 Byte
"""
struct ParticleValue
p::Particle
v::Float64
end
"""
mass(t::ParticleType)
mass(t::Type{T}) where {T <: ABCParticle}
Return the mass (at rest) of the given particle type.
"""
mass(t::ParticleType) = PARTICLE_MASSES[t]
mass(t::Type{T}) where {T <: ABCParticle} = PARTICLE_MASSES[t]
"""
remaining_type(t1::ParticleType, t2::ParticleType)
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
For 2 given (non-equal) particle types, return the third of ABC.
"""
function remaining_type(t1::ParticleType, t2::ParticleType)
function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
@assert t1 != t2
if t1 != A && t2 != A
return A
elseif t1 != B && t2 != B
return B
if t1 != Type{ParticleA} && t2 != Type{ParticleA}
return ParticleA
elseif t1 != Type{ParticleB} && t2 != Type{ParticleB}
return ParticleB
else
return C
return ParticleC
end
end
"""
square(p::Particle)
types(::ABCModel)
Return a Vector of the possible types of particle in the [`ABCModel`](@ref).
"""
function types(::ABCModel)
return [ParticleA, ParticleB, ParticleC]
end
"""
square(p::ABCParticle)
Return the square of the particle's momentum as a `Float` value.
Takes 7 effective FLOP.
"""
function square(p::Particle)
return p.P0 * p.P0 - p.P1 * p.P1 - p.P2 * p.P2 - p.P3 * p.P3
function square(p::ABCParticle)
return getMass2(p.momentum)
end
"""
inner_edge(p::Particle)
inner_edge(p::ABCParticle)
Return the factor of the inner edge with the given (virtual) particle.
Takes 10 effective FLOP. (3 here + 10 in square(p))
Takes 10 effective FLOP. (3 here + 7 in square(p))
"""
function inner_edge(p::Particle)
return 1.0 / (square(p) - mass(p.type) * mass(p.type))
function inner_edge(p::ABCParticle)
return 1.0 / (square(p) - mass(typeof(p)) * mass(typeof(p)))
end
"""
outer_edge(p::Particle)
outer_edge(p::ABCParticle)
Return the factor of the outer edge with the given (real) particle.
Takes 0 effective FLOP.
"""
function outer_edge(p::Particle)
function outer_edge(p::ABCParticle)
return 1.0
end
@ -111,20 +152,58 @@ function vertex()
end
"""
preserve_momentum(p1::Particle, p2::Particle)
preserve_momentum(p1::ABCParticle, p2::ABCParticle)
Calculate and return a new particle from two given interacting ones at a vertex.
Takes 4 effective FLOP.
"""
function preserve_momentum(p1::Particle, p2::Particle)
p3 = Particle(
p1.P0 + p2.P0,
p1.P1 + p2.P1,
p1.P2 + p2.P2,
p1.P3 + p2.P3,
remaining_type(p1.type, p2.type),
)
function preserve_momentum(p1::ABCParticle, p2::ABCParticle)
t3 = interaction_result(typeof(p1), typeof(p2))
p3 = t3(p1.momentum + p2.momentum)
return p3
end
"""
type_from_name(name::String)
For a name of a particle, return the particle's [`Type`].
"""
function type_from_name(name::String)
if startswith(name, "A")
return ParticleA
elseif startswith(name, "B")
return ParticleB
elseif startswith(name, "C")
return ParticleC
else
throw("Invalid name for a particle in the ABC model")
end
end
function String(::Type{ParticleA})
return "A"
end
function String(::Type{ParticleB})
return "B"
end
function String(::Type{ParticleC})
return "C"
end
function in_particles(process::ABCProcessDescription)
return process.inParticles
end
function in_particles(input::ABCProcessInput)
return input.inParticles
end
function out_particles(process::ABCProcessDescription)
return process.outParticles
end
function out_particles(input::ABCProcessInput)
return input.outParticles
end

58
src/models/abc/print.jl Normal file
View File

@ -0,0 +1,58 @@
"""
show(io::IO, process::ABCProcessDescription)
Pretty print an [`ABCProcessDescription`](@ref) (no newlines).
```jldoctest
julia> using MetagraphOptimization
julia> print(parse_process("AB->ABBB", ABCModel()))
ABC Process: 'AB->ABBB'
```
"""
function show(io::IO, process::ABCProcessDescription)
# types() gives the types in order (ABC) instead of random like keys() would
print(io, "ABC Process: \'")
for type in types(ABCModel())
for _ in 1:get(process.inParticles, type, 0)
print(io, String(type))
end
end
print(io, "->")
for type in types(ABCModel())
for _ in 1:get(process.outParticles, type, 0)
print(io, String(type))
end
end
print(io, "'")
return nothing
end
"""
show(io::IO, processInput::ABCProcessInput)
Pretty print an [`ABCProcessInput`](@ref) (with newlines).
"""
function show(io::IO, processInput::ABCProcessInput)
println(io, "Input for $(processInput.process):")
println(io, " $(length(processInput.inParticles)) Incoming particles:")
for particle in processInput.inParticles
println(io, " $particle")
end
println(io, " $(length(processInput.outParticles)) Outgoing Particles:")
for particle in processInput.outParticles
println(io, " $particle")
end
return nothing
end
"""
show(io::IO, particle::T) where {T <: ABCParticle}
Pretty print an [`ABCParticle`](@ref) (no newlines).
"""
function show(io::IO, particle::T) where {T <: ABCParticle}
print(io, "$(String(typeof(particle))): $(particle.momentum)")
return nothing
end

View File

@ -57,42 +57,42 @@ end
Print the S1 task to io.
"""
show(io::IO, t::ComputeTaskS1) = print("ComputeS1")
show(io::IO, t::ComputeTaskS1) = print(io, "ComputeS1")
"""
show(io::IO, t::ComputeTaskS2)
Print the S2 task to io.
"""
show(io::IO, t::ComputeTaskS2) = print("ComputeS2")
show(io::IO, t::ComputeTaskS2) = print(io, "ComputeS2")
"""
show(io::IO, t::ComputeTaskP)
Print the P task to io.
"""
show(io::IO, t::ComputeTaskP) = print("ComputeP")
show(io::IO, t::ComputeTaskP) = print(io, "ComputeP")
"""
show(io::IO, t::ComputeTaskU)
Print the U task to io.
"""
show(io::IO, t::ComputeTaskU) = print("ComputeU")
show(io::IO, t::ComputeTaskU) = print(io, "ComputeU")
"""
show(io::IO, t::ComputeTaskV)
Print the V task to io.
"""
show(io::IO, t::ComputeTaskV) = print("ComputeV")
show(io::IO, t::ComputeTaskV) = print(io, "ComputeV")
"""
show(io::IO, t::ComputeTaskSum)
Print the sum task to io.
"""
show(io::IO, t::ComputeTaskSum) = print("ComputeSum")
show(io::IO, t::ComputeTaskSum) = print(io, "ComputeSum")
"""
copy(t::DataTask)
@ -147,19 +147,20 @@ children(::ComputeTaskV) = 2
"""
children(::ComputeTaskSum)
Return the number of children of a ComputeTaskSum, since this is variable and the task doesn't know
how many children it will sum over, return a wildcard -1.
TODO: this is kind of bad because it means we can't fuse with a sum task
Return the number of children of a ComputeTaskSum.
"""
children(::ComputeTaskSum) = -1
children(t::ComputeTaskSum) = t.children_number
"""
children(t::FusedComputeTask)
Return the number of children of a FusedComputeTask. It's the sum of the children of both tasks minus one.
Return the number of children of a FusedComputeTask.
"""
function children(t::FusedComputeTask)
(T1, T2) = get_types(t)
return children(T1()) + children(T2()) - 1 # one of the inputs is the output of T1 and thus not a child of the node
return length(union(Set(t.t1_inputs), Set(t.t2_inputs)))
end
function add_child!(t::ComputeTaskSum)
t.children_number += 1
return nothing
end

View File

@ -47,19 +47,13 @@ struct ComputeTaskU <: AbstractComputeTask end
Task that sums all its inputs, n children.
"""
struct ComputeTaskSum <: AbstractComputeTask end
mutable struct ComputeTaskSum <: AbstractComputeTask
children_number::Int
end
"""
ABC_TASKS
Constant vector of all tasks of the ABC-Model.
"""
ABC_TASKS = [
DataTask,
ComputeTaskS1,
ComputeTaskS2,
ComputeTaskP,
ComputeTaskV,
ComputeTaskU,
ComputeTaskSum,
]
ABC_TASKS = [DataTask, ComputeTaskS1, ComputeTaskS2, ComputeTaskP, ComputeTaskV, ComputeTaskU, ComputeTaskSum]

109
src/models/interface.jl Normal file
View File

@ -0,0 +1,109 @@
"""
AbstractPhysicsModel
Base type for a model, e.g. ABC-Model or QED. This is used to dispatch many functions.
"""
abstract type AbstractPhysicsModel end
"""
AbstractParticle
Base type for particles belonging to a certain [`AbstractPhysicsModel`](@ref).
"""
abstract type AbstractParticle end
"""
ParticleValue{ParticleType <: AbstractParticle}
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated.
`sizeof(ParticleValue())` = 48 Byte
"""
struct ParticleValue{ParticleType <: AbstractParticle}
p::ParticleType
v::Float64
end
"""
AbstractProcessDescription
Base type for process descriptions. An object of this type of a corresponding [`AbstractPhysicsModel`](@ref) should uniquely identify a process in that model.
See also: [`parse_process`](@ref)
"""
abstract type AbstractProcessDescription end
"""
AbstractProcessInput
Base type for process inputs. An object of this type contains the input values (e.g. momenta) of the particles in a process.
See also: [`gen_process_input`](@ref)
"""
abstract type AbstractProcessInput end
"""
mass(t::Type{T}) where {T <: AbstractParticle}
Interface function that must be implemented for every subtype of [`AbstractParticle`](@ref), returning the particles mass at rest.
"""
function mass end
"""
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: AbstractParticle, T2 <: AbstractParticle}
Interface function that must be implemented for every subtype of [`AbstractParticle`](@ref), returning the result particle type when the two given particles interact.
"""
function interaction_result end
"""
types(::AbstractPhysicsModel)
Interface function that must be implemented for every subtype of [`AbstractPhysicsModel`](@ref), returning a `Vector` of the available particle types in the model.
"""
function types end
"""
in_particles(::AbstractProcessDescription)
Interface function that must be implemented for every subtype of [`AbstractProcessDescription`](@ref).
Returns a `<: Dict{Type{AbstractParticle}, Int}` object, representing the number of incoming particles for the process per particle type.
in_particles(::AbstractProcessInput)
Interface function that must be implemented for every subtype of [`AbstractProcessInput`](@ref).
Returns a `<: Vector{AbstractParticle}` object with the values of all incoming particles for the corresponding `ProcessDescription`.
"""
function in_particles end
"""
out_particles(::AbstractProcessDescription)
Interface function that must be implemented for every subtype of [`AbstractProcessDescription`](@ref).
Returns a `<: Dict{Type{AbstractParticle}, Int}` object, representing the number of outgoing particles for the process per particle type.
out_particles(::AbstractProcessInput)
Interface function that must be implemented for every subtype of [`AbstractProcessInput`](@ref).
Returns a `<: Vector{AbstractParticle}` object with the values of all outgoing particles for the corresponding `ProcessDescription`.
"""
function out_particles end
"""
parse_process(::AbstractString, ::AbstractPhysicsModel)
Interface function that must be implemented for every subtype of [`AbstractPhysicsModel`](@ref).
Returns a `ProcessDescription` object.
"""
function parse_process end
"""
gen_process_input(::AbstractProcessDescription)
Interface function that must be implemented for every specific [`AbstractProcessDescription`](@ref).
Returns a randomly generated and valid corresponding `ProcessInput`.
"""
function gen_process_input end

10
src/models/print.jl Normal file
View File

@ -0,0 +1,10 @@
"""
show(io::IO, particleValue::ParticleValue)
Pretty print a [`ParticleValue`](@ref), no newlines.
"""
function show(io::IO, particleValue::ParticleValue)
print(io, "($(particleValue.p), value: $(particleValue.v))")
return nothing
end

View File

@ -1,44 +1,20 @@
DataTaskNode(t::AbstractDataTask, name = "") = DataTaskNode(
t,
Vector{Node}(),
Vector{Node}(),
UUIDs.uuid1(rng[threadid()]),
missing,
missing,
missing,
name,
)
DataTaskNode(t::AbstractDataTask, name = "") =
DataTaskNode(t, Vector{Node}(), Vector{Node}(), UUIDs.uuid1(rng[threadid()]), missing, missing, missing, name)
ComputeTaskNode(t::AbstractComputeTask) = ComputeTaskNode(
t,
Vector{Node}(),
Vector{Node}(),
UUIDs.uuid1(rng[threadid()]),
missing,
missing,
Vector{NodeFusion}(),
t, # task
Vector{Node}(), # parents
Vector{Node}(), # children
UUIDs.uuid1(rng[threadid()]), # id
missing, # node reduction
missing, # node split
Vector{NodeFusion}(), # node fusions
missing, # device
)
copy(m::Missing) = missing
copy(n::ComputeTaskNode) = ComputeTaskNode(
copy(n.task),
copy(n.parents),
copy(n.children),
UUIDs.uuid1(rng[threadid()]),
copy(n.nodeReduction),
copy(n.nodeSplit),
copy(n.nodeFusions),
)
copy(n::DataTaskNode) = DataTaskNode(
copy(n.task),
copy(n.parents),
copy(n.children),
UUIDs.uuid1(rng[threadid()]),
copy(n.nodeReduction),
copy(n.nodeSplit),
copy(n.nodeFusion),
n.name,
)
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(n.task))
copy(n::DataTaskNode) = DataTaskNode(copy(n.task), n.name)
"""
make_node(t::AbstractTask)

View File

@ -22,5 +22,6 @@ end
Return the uuid as a string usable as a variable name in code generation.
"""
function to_var_name(id::UUID)
return replace(string(id), "-" => "_")
str = "_" * replace(string(id), "-" => "_")
return str
end

View File

@ -24,13 +24,14 @@ abstract type Operation end
Any node that transfers data and does no computation.
# Fields
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
`.id`: The node's id. Improves the speed of comparisons.\\
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
`.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.\\
`.name`: The name of this node for entry nodes into the graph ([`is_entry_node`](@ref)) to reliably assign the inputs to the correct nodes when executing.\\
"""
mutable struct DataTaskNode <: Node
task::AbstractDataTask
@ -60,16 +61,17 @@ end
"""
ComputeTaskNode <: Node
Any node that transfers data and does no computation.
Any node that computes a result from inputs using an [`AbstractComputeTask`](@ref).
# Fields
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
`.id`: The node's id. Improves the speed of comparisons.\\
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeFusion`: A vector of this node's [`NodeFusion`](@ref)s. For a ComputeTaskNode there can be any number of these, unlike the DataTaskNodes.
`.task`: The node's compute task type. A concrete subtype of [`AbstractComputeTask`](@ref).\\
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
`.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
`.nodeFusions`: A vector of this node's [`NodeFusion`](@ref)s. For a `ComputeTaskNode` there can be any number of these, unlike the [`DataTaskNode`](@ref)s.\\
`.device`: The Device this node has been scheduled on by a [`Scheduler`](@ref).
"""
mutable struct ComputeTaskNode <: Node
task::AbstractComputeTask
@ -82,6 +84,9 @@ mutable struct ComputeTaskNode <: Node
# for ComputeTasks there can be multiple fusions, unlike the DataTasks
nodeFusions::Vector{Operation}
# the device this node is assigned to execute on
device::Union{AbstractDevice, Missing}
end
"""
@ -95,8 +100,5 @@ The child is the prerequisite node of the parent.
"""
struct Edge
# edge points from child to parent
edge::Union{
Tuple{DataTaskNode, ComputeTaskNode},
Tuple{ComputeTaskNode, DataTaskNode},
}
edge::Union{Tuple{DataTaskNode, ComputeTaskNode}, Tuple{ComputeTaskNode, DataTaskNode}}
end

View File

@ -22,12 +22,24 @@ function is_valid_node(graph::DAG, node::Node)
@assert node in child.parents "Node is not a parent of its child!"
end
if !ismissing(node.nodeReduction)
#=if !ismissing(node.nodeReduction)
@assert is_valid(graph, node.nodeReduction)
end
if !ismissing(node.nodeSplit)
@assert is_valid(graph, node.nodeSplit)
end=#
if !(typeof(node.task) <: FusedComputeTask)
# the remaining checks are only necessary for fused compute tasks
return true
end
# every child must be in some input of the task
for child in node.children
str = Symbol(to_var_name(child.id))
@assert (str in node.task.t1_inputs) || (str in node.task.t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(node.task.t1_inputs)\nt2_inputs: $(node.task.t2_inputs)"
end
return true
end
@ -41,9 +53,9 @@ This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref).
function is_valid(graph::DAG, node::ComputeTaskNode)
@assert is_valid_node(graph, node)
for nf in node.nodeFusions
#=for nf in node.nodeFusions
@assert is_valid(graph, nf)
end
end=#
return true
end
@ -57,8 +69,8 @@ This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref).
function is_valid(graph::DAG, node::DataTaskNode)
@assert is_valid_node(graph, node)
if !ismissing(node.nodeFusion)
#=if !ismissing(node.nodeFusion)
@assert is_valid(graph, node.nodeFusion)
end
end=#
return true
end

View File

@ -34,12 +34,7 @@ Apply the given [`NodeFusion`](@ref) to the graph. Generic wrapper around [`node
Return an [`AppliedNodeFusion`](@ref) object generated from the graph's [`Diff`](@ref).
"""
function apply_operation!(graph::DAG, operation::NodeFusion)
diff = node_fusion!(
graph,
operation.input[1],
operation.input[2],
operation.input[3],
)
diff = node_fusion!(graph, operation.input[1], operation.input[2], operation.input[3])
graph.properties += GraphProperties(diff)
@ -124,17 +119,24 @@ function revert_diff!(graph::DAG, diff::Diff)
# add removed nodes, remove added nodes, same for edges
# note the order
for edge in diff.addedEdges
remove_edge!(graph, edge.edge[1], edge.edge[2], false)
remove_edge!(graph, edge.edge[1], edge.edge[2], track = false)
end
for node in diff.addedNodes
remove_node!(graph, node, false)
remove_node!(graph, node, track = false)
end
for node in diff.removedNodes
insert_node!(graph, node, false)
insert_node!(graph, node, track = false)
end
for edge in diff.removedEdges
insert_edge!(graph, edge.edge[1], edge.edge[2], false)
insert_edge!(graph, edge.edge[1], edge.edge[2], track = false)
end
for (node, task) in diff.updatedChildren
# node must be fused compute task at this point
@assert typeof(node.task) <: FusedComputeTask
node.task = task
end
graph.properties -= GraphProperties(diff)
@ -149,21 +151,24 @@ Fuse nodes n1 -> n2 -> n3 together into one node, return the applied difference
For details see [`NodeFusion`](@ref).
"""
function node_fusion!(
graph::DAG,
n1::ComputeTaskNode,
n2::DataTaskNode,
n3::ComputeTaskNode,
)
# @assert is_valid_node_fusion_input(graph, n1, n2, n3)
function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
@assert is_valid_node_fusion_input(graph, n1, n2, n3)
# clear snapshot
get_snapshot_diff(graph)
# save children and parents
n1_children = children(n1)
n3_parents = parents(n3)
n3_children = children(n3)
n1Children = children(n1)
n3Parents = parents(n3)
n1Task = copy(n1.task)
n3Task = copy(n3.task)
# assemble the input node vectors of n1 and n3 to save into the FusedComputeTask
n1Inputs = Vector{Symbol}()
for child in n1Children
push!(n1Inputs, Symbol(to_var_name(child.id)))
end
# remove the edges and nodes that will be replaced by the fused node
remove_edge!(graph, n1, n2)
@ -172,29 +177,38 @@ function node_fusion!(
remove_node!(graph, n2)
# get n3's children now so it automatically excludes n2
n3_children = children(n3)
n3Children = children(n3)
n3Inputs = Vector{Symbol}()
for child in n3Children
push!(n3Inputs, Symbol(to_var_name(child.id)))
end
remove_node!(graph, n3)
# create new node with the fused compute task
new_node =
ComputeTaskNode(FusedComputeTask{typeof(n1.task), typeof(n3.task)}())
insert_node!(graph, new_node)
newNode = ComputeTaskNode(FusedComputeTask(n1Task, n3Task, n1Inputs, Symbol(to_var_name(n2.id)), n3Inputs))
insert_node!(graph, newNode)
for child in n1_children
for child in n1Children
remove_edge!(graph, child, n1)
insert_edge!(graph, child, new_node)
insert_edge!(graph, child, newNode)
end
for child in n3_children
for child in n3Children
remove_edge!(graph, child, n3)
if !(child in n1_children)
insert_edge!(graph, child, new_node)
if !(child in n1Children)
insert_edge!(graph, child, newNode)
end
end
for parent in n3_parents
for parent in n3Parents
remove_edge!(graph, n3, parent)
insert_edge!(graph, new_node, parent)
insert_edge!(graph, newNode, parent)
# important! update the parent node's child names in case they are fused compute tasks
# needed for compute generation so the fused compute task can correctly match inputs to its component tasks
update_child!(graph, parent, Symbol(to_var_name(n3.id)), Symbol(to_var_name(newNode.id)))
end
return get_snapshot_diff(graph)
@ -208,21 +222,26 @@ Reduce the given nodes together into one node, return the applied difference to
For details see [`NodeReduction`](@ref).
"""
function node_reduction!(graph::DAG, nodes::Vector{Node})
# @assert is_valid_node_reduction_input(graph, nodes)
@assert is_valid_node_reduction_input(graph, nodes)
# clear snapshot
get_snapshot_diff(graph)
n1 = nodes[1]
n1_children = children(n1)
n1Children = children(n1)
n1_parents = Set(n1.parents)
new_parents = Set{Node}()
n1Parents = Set(n1.parents)
# set of the new parents of n1
newParents = Set{Node}()
# names of the previous children that n1 now replaces per parent
newParentsChildNames = Dict{Node, Symbol}()
# remove all of the nodes' parents and children and the nodes themselves (except for first node)
for i in 2:length(nodes)
n = nodes[i]
for child in n1_children
for child in n1Children
remove_edge!(graph, child, n)
end
@ -230,17 +249,23 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
remove_edge!(graph, n, parent)
# collect all parents
push!(new_parents, parent)
push!(newParents, parent)
newParentsChildNames[parent] = Symbol(to_var_name(n.id))
end
remove_node!(graph, n)
end
setdiff!(new_parents, n1_parents)
for parent in new_parents
for parent in newParents
# now add parents of all input nodes to n1 without duplicates
insert_edge!(graph, n1, parent)
if !(parent in n1Parents)
# don't double insert edges
insert_edge!(graph, n1, parent)
end
# this has to be done for all parents, even the ones of n1 because they can be duplicate
prevChild = newParentsChildNames[parent]
update_child!(graph, parent, prevChild, Symbol(to_var_name(n1.id)))
end
return get_snapshot_diff(graph)
@ -254,30 +279,33 @@ Split the given node into one node per parent, return the applied difference to
For details see [`NodeSplit`](@ref).
"""
function node_split!(graph::DAG, n1::Node)
# @assert is_valid_node_split_input(graph, n1)
@assert is_valid_node_split_input(graph, n1)
# clear snapshot
get_snapshot_diff(graph)
n1_parents = parents(n1)
n1_children = children(n1)
n1Parents = parents(n1)
n1Children = children(n1)
for parent in n1_parents
for parent in n1Parents
remove_edge!(graph, n1, parent)
end
for child in n1_children
for child in n1Children
remove_edge!(graph, child, n1)
end
remove_node!(graph, n1)
for parent in n1_parents
n_copy = copy(n1)
insert_node!(graph, n_copy)
insert_edge!(graph, n_copy, parent)
for parent in n1Parents
nCopy = copy(n1)
for child in n1_children
insert_edge!(graph, child, n_copy)
insert_node!(graph, nCopy)
insert_edge!(graph, nCopy, parent)
for child in n1Children
insert_edge!(graph, child, nCopy)
end
update_child!(graph, parent, Symbol(to_var_name(n1.id)), Symbol(to_var_name(nCopy.id)))
end
return get_snapshot_diff(graph)

View File

@ -7,10 +7,7 @@ using Base.Threads
Insert the given node fusion into its input nodes' operation caches. For the compute nodes, locking via the given `locks` is employed to have safe multi-threading. For a large set of nodes, contention on the locks should be very small.
"""
function insert_operation!(
nf::NodeFusion,
locks::Dict{ComputeTaskNode, SpinLock},
)
function insert_operation!(nf::NodeFusion, locks::Dict{ComputeTaskNode, SpinLock})
n1 = nf.input[1]
n2 = nf.input[2]
n3 = nf.input[3]
@ -52,10 +49,7 @@ end
Insert the node reductions into the graph and the nodes' caches. Employs multithreading for speedup.
"""
function nr_insertion!(
operations::PossibleOperations,
nodeReductions::Vector{Vector{NodeReduction}},
)
function nr_insertion!(operations::PossibleOperations, nodeReductions::Vector{Vector{NodeReduction}})
total_len = 0
for vec in nodeReductions
total_len += length(vec)
@ -83,11 +77,7 @@ end
Insert the node fusions into the graph and the nodes' caches. Employs multithreading for speedup.
"""
function nf_insertion!(
graph::DAG,
operations::PossibleOperations,
nodeFusions::Vector{Vector{NodeFusion}},
)
function nf_insertion!(graph::DAG, operations::PossibleOperations, nodeFusions::Vector{Vector{NodeFusion}})
total_len = 0
for vec in nodeFusions
total_len += length(vec)
@ -122,10 +112,7 @@ end
Insert the node splits into the graph and the nodes' caches. Employs multithreading for speedup.
"""
function ns_insertion!(
operations::PossibleOperations,
nodeSplits::Vector{Vector{NodeSplit}},
)
function ns_insertion!(operations::PossibleOperations, nodeSplits::Vector{Vector{NodeSplit}})
total_len = 0
for vec in nodeSplits
total_len += length(vec)
@ -231,16 +218,12 @@ function generate_operations(graph::DAG)
continue
end
push!(
generatedFusions[threadid()],
NodeFusion((child_node, node, parent_node)),
)
push!(generatedFusions[threadid()], NodeFusion((child_node, node, parent_node)))
end
end
# launch thread for node fusion insertion
nf_task =
@task nf_insertion!(graph, graph.possibleOperations, generatedFusions)
nf_task = @task nf_insertion!(graph, graph.possibleOperations, generatedFusions)
schedule(nf_task)
# find possible node splits

View File

@ -4,9 +4,7 @@
Return whether `operations` is empty, i.e. all of its fields are empty.
"""
function isempty(operations::PossibleOperations)
return isempty(operations.nodeFusions) &&
isempty(operations.nodeReductions) &&
isempty(operations.nodeSplits)
return isempty(operations.nodeFusions) && isempty(operations.nodeReductions) && isempty(operations.nodeSplits)
end
"""
@ -63,9 +61,7 @@ function can_fuse(n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
return false
end
if length(n2.parents) != 1 ||
length(n2.children) != 1 ||
length(n1.parents) != 1
if length(n2.parents) != 1 || length(n2.children) != 1 || length(n1.parents) != 1
return false
end

View File

@ -9,24 +9,12 @@ Assert for a gven node fusion input whether the nodes can be fused. For the requ
Intended for use with `@assert` or `@test`.
"""
function is_valid_node_fusion_input(
graph::DAG,
n1::ComputeTaskNode,
n2::DataTaskNode,
n3::ComputeTaskNode,
)
function is_valid_node_fusion_input(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
if !(n1 in graph) || !(n2 in graph) || !(n3 in graph)
throw(
AssertionError(
"[Node Fusion] The given nodes are not part of the given graph",
),
)
throw(AssertionError("[Node Fusion] The given nodes are not part of the given graph"))
end
if !is_child(n1, n2) ||
!is_child(n2, n3) ||
!is_parent(n3, n2) ||
!is_parent(n2, n1)
if !is_child(n1, n2) || !is_child(n2, n3) || !is_parent(n3, n2) || !is_parent(n2, n1)
throw(
AssertionError(
"[Node Fusion] The given nodes are not connected by edges which is required for node fusion",
@ -35,27 +23,19 @@ function is_valid_node_fusion_input(
end
if length(n2.parents) > 1
throw(
AssertionError(
"[Node Fusion] The given data node has more than one parent",
),
)
throw(AssertionError("[Node Fusion] The given data node has more than one parent"))
end
if length(n2.children) > 1
throw(
AssertionError(
"[Node Fusion] The given data node has more than one child",
),
)
throw(AssertionError("[Node Fusion] The given data node has more than one child"))
end
if length(n1.parents) > 1
throw(
AssertionError(
"[Node Fusion] The given n1 has more than one parent",
),
)
throw(AssertionError("[Node Fusion] The given n1 has more than one parent"))
end
@assert is_valid(graph, n1)
@assert is_valid(graph, n2)
@assert is_valid(graph, n3)
return true
end
@ -69,22 +49,21 @@ Intended for use with `@assert` or `@test`.
function is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node})
for n in nodes
if n graph
throw(
AssertionError(
"[Node Reduction] The given nodes are not part of the given graph",
),
)
throw(AssertionError("[Node Reduction] The given nodes are not part of the given graph"))
end
@assert is_valid(graph, n)
end
t = typeof(nodes[1].task)
for n in nodes
if typeof(n.task) != t
throw(
AssertionError(
"[Node Reduction] The given nodes are not of the same type",
),
)
throw(AssertionError("[Node Reduction] The given nodes are not of the same type"))
end
if (typeof(n) <: DataTaskNode)
if (n.name != nodes[1].name)
throw(AssertionError("[Node Reduction] The given nodes do not have the same name"))
end
end
end
@ -111,11 +90,7 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid_node_split_input(graph::DAG, n1::Node)
if n1 graph
throw(
AssertionError(
"[Node Split] The given node is not part of the given graph",
),
)
throw(AssertionError("[Node Split] The given node is not part of the given graph"))
end
if length(n1.parents) <= 1
@ -126,6 +101,8 @@ function is_valid_node_split_input(graph::DAG, n1::Node)
)
end
@assert is_valid(graph, n1)
return true
end
@ -163,12 +140,7 @@ Assert for a given [`NodeFusion`](@ref) whether it is a valid operation in the g
Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, nf::NodeFusion)
@assert is_valid_node_fusion_input(
graph,
nf.input[1],
nf.input[2],
nf.input[3],
)
@assert is_valid_node_fusion_input(graph, nf.input[1], nf.input[2], nf.input[3])
@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
return true
end

View File

@ -11,8 +11,7 @@ function -(prop1::GraphProperties, prop2::GraphProperties)
computeIntensity = if (prop1.data - prop2.data == 0)
0.0
else
(prop1.computeEffort - prop2.computeEffort) /
(prop1.data - prop2.data)
(prop1.computeEffort - prop2.computeEffort) / (prop1.data - prop2.data)
end,
cost = prop1.cost - prop2.cost,
noNodes = prop1.noNodes - prop2.noNodes,
@ -33,8 +32,7 @@ function +(prop1::GraphProperties, prop2::GraphProperties)
computeIntensity = if (prop1.data + prop2.data == 0)
0.0
else
(prop1.computeEffort + prop2.computeEffort) /
(prop1.data + prop2.data)
(prop1.computeEffort + prop2.computeEffort) / (prop1.data + prop2.data)
end,
cost = prop1.cost + prop2.cost,
noNodes = prop1.noNodes + prop2.noNodes,

50
src/scheduler/greedy.jl Normal file
View File

@ -0,0 +1,50 @@
"""
GreedyScheduler
A greedy implementation of a scheduler, creating a topological ordering of nodes and naively balancing them onto the different devices.
"""
struct GreedyScheduler end
function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
nodeQueue = PriorityQueue{Node, Int}()
# use a priority equal to the number of unseen children -> 0 are nodes that can be added
for node in get_entry_nodes(graph)
enqueue!(nodeQueue, node => 0)
end
schedule = Vector{Node}()
sizehint!(schedule, length(graph.nodes))
# keep an accumulated cost of things scheduled to this device so far
deviceAccCost = PriorityQueue{AbstractDevice, Int}()
for device in machine.devices
enqueue!(deviceAccCost, device => 0)
end
node = nothing
while !isempty(nodeQueue)
@assert peek(nodeQueue)[2] == 0
node = dequeue!(nodeQueue)
# assign the device with lowest accumulated cost to the node (if it's a compute node)
if (isa(node, ComputeTaskNode))
lowestDevice = peek(deviceAccCost)[1]
node.device = lowestDevice
deviceAccCost[lowestDevice] = compute_effort(node.task)
end
push!(schedule, node)
for parent in node.parents
# reduce the priority of all parents by one
if (!haskey(nodeQueue, parent))
enqueue!(nodeQueue, parent => length(parent.children) - 1)
else
nodeQueue[parent] = nodeQueue[parent] - 1
end
end
end
return schedule
end

View File

@ -0,0 +1,18 @@
"""
Scheduler
Abstract base type for scheduler implementations. The scheduler is used to assign each node to a device and create a topological ordering of tasks.
"""
abstract type Scheduler end
"""
schedule_dag(::Scheduler, ::DAG, ::Machine)
Interface functions that must be implemented for implementations of [`Scheduler`](@ref).
The function assigns each [`ComputeTaskNode`](@ref) of the [`DAG`](@ref) to one of the devices in the given [`Machine`](@ref) and returns a `Vector{Node}` representing a topological ordering.
[`DataTaskNode`](@ref)s are not scheduled to devices since they do not compute. Instead, a data node transfers data from the [`AbstractDevice`](@ref) of their child to all [`AbstractDevice`](@ref)s of its parents.
"""
function schedule_dag end

89
src/task/compute.jl Normal file
View File

@ -0,0 +1,89 @@
"""
compute(t::FusedComputeTask, data)
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
"""
function compute(t::FusedComputeTask, data)
@assert false "This is not implemented and should never be called"
end
"""
get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector{String}, outExpr::String)
Generate code evaluating a [`FusedComputeTask`](@ref) on `inExprs`, providing the output on `outExpr`.
`inExprs` should be of the correct types and may be heterogeneous. `outExpr` will be of the type of the output of `T2` of t.
"""
function get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector, outExpr)
inExprs1 = Vector()
for sym in t.t1_inputs
push!(inExprs1, gen_access_expr(device, sym))
end
outExpr1 = gen_access_expr(device, t.t1_output)
inExprs2 = Vector()
for sym in t.t2_inputs
push!(inExprs2, gen_access_expr(device, sym))
end
expr1 = get_expression(t.first_task, device, inExprs1, outExpr1)
expr2 = get_expression(t.second_task, device, [inExprs2..., outExpr1], outExpr)
full_expr = Expr(:block, expr1, expr2)
return full_expr
end
"""
get_expression(node::ComputeTaskNode)
Generate and return code for a given [`ComputeTaskNode`](@ref).
"""
function get_expression(node::ComputeTaskNode)
@assert length(node.children) <= children(node.task) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(node.task))\nNode's children: $(getfield.(node.children, :children))"
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
inExprs = Vector()
for id in getfield.(node.children, :id)
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
end
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
return get_expression(node.task, node.device, inExprs, outExpr)
end
"""
get_expression(node::DataTaskNode)
Generate and return code for a given [`DataTaskNode`](@ref).
"""
function get_expression(node::DataTaskNode)
@assert length(node.children) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
# TODO: dispatch to device implementations generating the copy commands
child = node.children[1]
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
dataTransportExp = Meta.parse("$outExpr = $inExpr")
return dataTransportExp
end
"""
get_init_expression(node::DataTaskNode, device::AbstractDevice)
Generate and return code for the initial input reading expression for [`DataTaskNode`](@ref)s with 0 children, i.e., entry nodes.
See also: [`get_entry_nodes`](@ref)
"""
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
@assert isempty(node.children) "Trying to call get_init_expression on a data task node that is not an entry node."
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))
dataTransportExp = Meta.parse("$outExpr = $inExpr")
return dataTransportExp
end

View File

@ -3,8 +3,7 @@
Fallback implementation of the copy of an abstract data task, throwing an error.
"""
copy(t::AbstractDataTask) =
error("Need to implement copying for your data tasks!")
copy(t::AbstractDataTask) = error("Need to implement copying for your data tasks!")
"""
copy(t::AbstractComputeTask)
@ -12,3 +11,21 @@ copy(t::AbstractDataTask) =
Return a copy of the given compute task.
"""
copy(t::AbstractComputeTask) = typeof(t)()
"""
copy(t::FusedComputeTask)
Return a copy of th egiven [`FusedComputeTask`](@ref).
"""
function copy(t::FusedComputeTask{T1, T2}) where {T1, T2}
return FusedComputeTask{T1, T2}(
copy(t.first_task),
copy(t.second_task),
copy(t.t1_inputs),
t.t1_output,
copy(t.t2_inputs),
)
end
FusedComputeTask{T1, T2}(t1_inputs::Vector{String}, t1_output::String, t2_inputs::Vector{String}) where {T1, T2} =
FusedComputeTask{T1, T2}(T1(), T2(), t1_inputs, t1_output, t2_inputs)

View File

@ -4,6 +4,5 @@
Print a string representation of the fused compute task to io.
"""
function show(io::IO, t::FusedComputeTask)
(T1, T2) = get_types(t)
return print(io, "ComputeFuse(", T1(), ", ", T2(), ")")
return print(io, "ComputeFuse($(t.first_task), $(t.second_task))")
end

View File

@ -71,8 +71,7 @@ data(t::AbstractComputeTask) = 0
Return the compute effort of a fused compute task.
"""
function compute_effort(t::FusedComputeTask)
(T1, T2) = collect(typeof(t).parameters)
return compute_effort(T1()) + compute_effort(T2())
return compute_effort(t.first_task) + compute_effort(t.second_task)
end
"""
@ -81,30 +80,3 @@ end
Return a tuple of a the fused compute task's components' types.
"""
get_types(::FusedComputeTask{T1, T2}) where {T1, T2} = (T1, T2)
"""
get_expression(t::AbstractTask)
Return an expression evaluating the given task on the :dataIn symbol
"""
function get_expression(t::AbstractTask)
return quote
dataOut = compute($t, dataIn)
end
end
"""
get_expression()
"""
function get_expression(
t::FusedComputeTask,
inSymbol::Symbol,
outSymbol::Symbol,
)
#TODO
computeExp = quote
$outSymbol = compute($t, $inSymbol)
end
return computeExp
end

View File

@ -26,5 +26,13 @@ A fused compute task made up of the computation of first `T1` and then `T2`.
Also see: [`get_types`](@ref).
"""
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <:
AbstractComputeTask end
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <: AbstractComputeTask
first_task::T1
second_task::T2
# the names of the inputs for T1
t1_inputs::Vector{Symbol}
# output name of T1
t1_output::Symbol
# t2_inputs doesn't include the output of t1, that's implicit
t2_inputs::Vector{Symbol}
end

View File

@ -87,3 +87,19 @@ Return the memory footprint of the node in Byte. Used in [`mem(graph::DAG)`](@re
function mem(node::Node)
return Base.summarysize(node, exclude = Union{Node, Operation})
end
"""
unroll_symbol_vector(vec::Vector{Symbol})
Return the given vector as single String without quotation marks or brackets.
"""
function unroll_symbol_vector(vec::Vector)
result = ""
for s in vec
if (result != "")
result *= ", "
end
result *= "$s"
end
return result
end

View File

@ -1,3 +1,4 @@
[deps]
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

View File

@ -2,7 +2,7 @@ using Random
function test_known_graph(name::String, n, fusion_test = true)
@testset "Test $name Graph ($n)" begin
graph = parse_abc(joinpath(@__DIR__, "..", "input", "$name.txt"))
graph = parse_dag(joinpath(@__DIR__, "..", "input", "$name.txt"), ABCModel())
props = get_properties(graph)
if (fusion_test)

View File

@ -5,51 +5,51 @@ import MetagraphOptimization.make_node
@testset "Unit Tests Node Reduction" begin
graph = MetagraphOptimization.DAG()
d_exit = insert_node!(graph, make_node(DataTask(10)), false)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
ED = insert_node!(graph, make_node(DataTask(3)), false)
FD = insert_node!(graph, make_node(DataTask(3)), false)
ED = insert_node!(graph, make_node(DataTask(3)), track = false)
FD = insert_node!(graph, make_node(DataTask(3)), track = false)
EC = insert_node!(graph, make_node(ComputeTaskV()), false)
FC = insert_node!(graph, make_node(ComputeTaskV()), false)
EC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
FC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
A1D = insert_node!(graph, make_node(DataTask(4)), false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), false)
C1D = insert_node!(graph, make_node(DataTask(4)), false)
A1D = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), track = false)
C1D = insert_node!(graph, make_node(DataTask(4)), track = false)
A1C = insert_node!(graph, make_node(ComputeTaskU()), false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskU()), false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskU()), false)
C1C = insert_node!(graph, make_node(ComputeTaskU()), false)
A1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
C1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
AD = insert_node!(graph, make_node(DataTask(5)), false)
BD = insert_node!(graph, make_node(DataTask(5)), false)
CD = insert_node!(graph, make_node(DataTask(5)), false)
AD = insert_node!(graph, make_node(DataTask(5)), track = false)
BD = insert_node!(graph, make_node(DataTask(5)), track = false)
CD = insert_node!(graph, make_node(DataTask(5)), track = false)
insert_edge!(graph, s0, d_exit, false)
insert_edge!(graph, ED, s0, false)
insert_edge!(graph, FD, s0, false)
insert_edge!(graph, EC, ED, false)
insert_edge!(graph, FC, FD, false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, ED, s0, track = false)
insert_edge!(graph, FD, s0, track = false)
insert_edge!(graph, EC, ED, track = false)
insert_edge!(graph, FC, FD, track = false)
insert_edge!(graph, A1D, EC, false)
insert_edge!(graph, B1D_1, EC, false)
insert_edge!(graph, A1D, EC, track = false)
insert_edge!(graph, B1D_1, EC, track = false)
insert_edge!(graph, B1D_2, FC, false)
insert_edge!(graph, C1D, FC, false)
insert_edge!(graph, B1D_2, FC, track = false)
insert_edge!(graph, C1D, FC, track = false)
insert_edge!(graph, A1C, A1D, false)
insert_edge!(graph, B1C_1, B1D_1, false)
insert_edge!(graph, B1C_2, B1D_2, false)
insert_edge!(graph, C1C, C1D, false)
insert_edge!(graph, A1C, A1D, track = false)
insert_edge!(graph, B1C_1, B1D_1, track = false)
insert_edge!(graph, B1C_2, B1D_2, track = false)
insert_edge!(graph, C1C, C1D, track = false)
insert_edge!(graph, AD, A1C, false)
insert_edge!(graph, BD, B1C_1, false)
insert_edge!(graph, BD, B1C_2, false)
insert_edge!(graph, CD, C1C, false)
insert_edge!(graph, AD, A1C, track = false)
insert_edge!(graph, BD, B1C_1, track = false)
insert_edge!(graph, BD, B1C_2, track = false)
insert_edge!(graph, CD, C1C, track = false)
@test is_valid(graph)

View File

@ -1,31 +1,177 @@
import MetagraphOptimization.A
import MetagraphOptimization.B
import MetagraphOptimization.ParticleType
import MetagraphOptimization.ABCParticle
@testset "Unit Tests Graph" begin
particles = Dict{ParticleType, Vector{Particle}}(
(
A => [
Particle(0.823648, 0.0, 0.0, 0.823648, A),
Particle(0.823648, -0.835061, -0.474802, 0.277915, A),
]
),
(
B => [
Particle(0.823648, 0.0, 0.0, -0.823648, B),
Particle(0.823648, 0.835061, 0.474802, -0.277915, B),
]
),
using QEDbase
include("../examples/profiling_utilities.jl")
@testset "Unit Tests Execution" begin
machine = get_machine_info()
process_2_2 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
)
expected_result = 5.5320567694746876e-5
particles_2_2 = ABCProcessInput(
process_2_2,
ABCParticle[
ParticleA(SFourMomentum(0.823648, 0.0, 0.0, 0.823648)),
ParticleB(SFourMomentum(0.823648, 0.0, 0.0, -0.823648)),
],
ABCParticle[
ParticleA(SFourMomentum(0.823648, -0.835061, -0.474802, 0.277915)),
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
],
)
expected_result = 0.00013916495566048735
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_abc(joinpath(@__DIR__, "..", "input", "AB->AB.txt"))
@test isapprox(execute(graph, particles), expected_result; rtol = 0.001)
@testset "AB->AB no optimization" begin
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
code = MetagraphOptimization.gen_code(graph)
@test isapprox(execute(code, particles), expected_result; rtol = 0.001)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
func = get_compute_function(graph, process_2_2, machine)
@test isapprox(func(particles_2_2), expected_result; rtol = 0.001)
end
end
@testset "AB->AB after random walk" begin
for i in 1:1000
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
random_walk!(graph, 50)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
end
end
process_2_4 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 3),
)
particles_2_4 = gen_process_input(process_2_4)
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
expected_result = execute(graph, process_2_4, machine, particles_2_4)
@testset "AB->ABBB no optimization" begin
for _ in 1:5 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
func = get_compute_function(graph, process_2_4, machine)
@test isapprox(func(particles_2_4), expected_result; rtol = 0.001)
end
end
@testset "AB->ABBB after random walk" begin
for i in 1:200
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
random_walk!(graph, 100)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
end
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
@testset "AB->AB fusion edge case" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push two fusions with ComputeTaskV
for _ in 1:2
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, ComputeTaskV)
push_operation!(graph, fusion)
break
end
end
end
# push fusions until the end
cont = true
while cont
cont = false
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, FusedComputeTask)
push_operation!(graph, fusion)
cont = true
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
end
println("Execution Unit Tests Complete!")

View File

@ -11,104 +11,101 @@ import MetagraphOptimization.partners
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) ==
(addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) ==
(nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(10)), false)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
@test length(graph.nodes) == 1
@test length(graph.dirtyNodes) == 1
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskS2()), false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
@test length(graph.nodes) == 2
@test length(graph.dirtyNodes) == 2
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), false)
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskV()), false)
v1 = insert_node!(graph, make_node(ComputeTaskV()), false)
v0 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
# data from uB, uA, uBp and uAp to v0 and v1
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), false)
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
# uB, uA, uBp and uAp computes
uB = insert_node!(graph, make_node(ComputeTaskU()), false)
uA = insert_node!(graph, make_node(ComputeTaskU()), false)
uBp = insert_node!(graph, make_node(ComputeTaskU()), false)
uAp = insert_node!(graph, make_node(ComputeTaskU()), false)
uB = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uA = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uBp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uAp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
# data from PB, PA, PBp and PAp to uB, uA, uBp and uAp
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), false)
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), track = false)
# P computes PB, PA, PBp and PAp
PB = insert_node!(graph, make_node(ComputeTaskP()), false)
PA = insert_node!(graph, make_node(ComputeTaskP()), false)
PBp = insert_node!(graph, make_node(ComputeTaskP()), false)
PAp = insert_node!(graph, make_node(ComputeTaskP()), false)
PB = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PA = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PBp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PAp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
# entry nodes getting data for P computes
d_PB = insert_node!(graph, make_node(DataTask(4)), false)
d_PA = insert_node!(graph, make_node(DataTask(4)), false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), false)
d_PB = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PA = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), track = false)
@test length(graph.nodes) == 26
@test length(graph.dirtyNodes) == 26
# now for all the edges
insert_edge!(graph, d_PB, PB, false)
insert_edge!(graph, d_PA, PA, false)
insert_edge!(graph, d_PBp, PBp, false)
insert_edge!(graph, d_PAp, PAp, false)
insert_edge!(graph, d_PB, PB, track = false)
insert_edge!(graph, d_PA, PA, track = false)
insert_edge!(graph, d_PBp, PBp, track = false)
insert_edge!(graph, d_PAp, PAp, track = false)
insert_edge!(graph, PB, d_PB_uB, false)
insert_edge!(graph, PA, d_PA_uA, false)
insert_edge!(graph, PBp, d_PBp_uBp, false)
insert_edge!(graph, PAp, d_PAp_uAp, false)
insert_edge!(graph, PB, d_PB_uB, track = false)
insert_edge!(graph, PA, d_PA_uA, track = false)
insert_edge!(graph, PBp, d_PBp_uBp, track = false)
insert_edge!(graph, PAp, d_PAp_uAp, track = false)
insert_edge!(graph, d_PB_uB, uB, false)
insert_edge!(graph, d_PA_uA, uA, false)
insert_edge!(graph, d_PBp_uBp, uBp, false)
insert_edge!(graph, d_PAp_uAp, uAp, false)
insert_edge!(graph, d_PB_uB, uB, track = false)
insert_edge!(graph, d_PA_uA, uA, track = false)
insert_edge!(graph, d_PBp_uBp, uBp, track = false)
insert_edge!(graph, d_PAp_uAp, uAp, track = false)
insert_edge!(graph, uB, d_uB_v0, false)
insert_edge!(graph, uA, d_uA_v0, false)
insert_edge!(graph, uBp, d_uBp_v1, false)
insert_edge!(graph, uAp, d_uAp_v1, false)
insert_edge!(graph, uB, d_uB_v0, track = false)
insert_edge!(graph, uA, d_uA_v0, track = false)
insert_edge!(graph, uBp, d_uBp_v1, track = false)
insert_edge!(graph, uAp, d_uAp_v1, track = false)
insert_edge!(graph, d_uB_v0, v0, false)
insert_edge!(graph, d_uA_v0, v0, false)
insert_edge!(graph, d_uBp_v1, v1, false)
insert_edge!(graph, d_uAp_v1, v1, false)
insert_edge!(graph, d_uB_v0, v0, track = false)
insert_edge!(graph, d_uA_v0, v0, track = false)
insert_edge!(graph, d_uBp_v1, v1, track = false)
insert_edge!(graph, d_uAp_v1, v1, track = false)
insert_edge!(graph, v0, d_v0_s0, false)
insert_edge!(graph, v1, d_v1_s0, false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, d_v0_s0, s0, false)
insert_edge!(graph, d_v1_s0, s0, false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, s0, d_exit, false)
insert_edge!(graph, s0, d_exit, track = false)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 26
@test length(graph.diff) ==
(addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test is_valid(graph)
@ -135,8 +132,7 @@ import MetagraphOptimization.partners
@test length(siblings(s0)) == 1
operations = get_operations(graph)
@test length(operations) ==
(nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test operations == get_operations(graph)
@ -157,8 +153,7 @@ import MetagraphOptimization.partners
@test length(graph.operationsToApply) == 1
@test first(graph.operationsToApply) == nf
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) ==
(addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
# this applies pending operations
properties = get_properties(graph)
@ -176,8 +171,7 @@ import MetagraphOptimization.partners
operations = get_operations(graph)
@test length(graph.dirtyNodes) == 0
@test length(operations) ==
(nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test length(operations) == (nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test !isempty(operations)
possibleNF = 9
@ -185,14 +179,12 @@ import MetagraphOptimization.partners
push_operation!(graph, first(operations.nodeFusions))
operations = get_operations(graph)
possibleNF = possibleNF - 1
@test length(operations) ==
(nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
@test length(operations) == (nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
end
@test isempty(operations)
@test length(operations) ==
(nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(operations) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 6
@test length(graph.appliedOperations) == 10
@ -213,8 +205,7 @@ import MetagraphOptimization.partners
@test properties.computeIntensity 28 / 62
operations = get_operations(graph)
@test length(operations) ==
(nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test is_valid(graph)
end

View File

@ -3,8 +3,7 @@
nC1 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskU())
nC2 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskV())
nC3 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskP())
nC4 =
MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskSum())
nC4 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskSum())
nD1 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
nD2 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(20))

View File

@ -5,9 +5,7 @@
@test MetagraphOptimization.bytes_to_human_readable(1025) == "1.001 KiB"
@test MetagraphOptimization.bytes_to_human_readable(684235) == "668.2 KiB"
@test MetagraphOptimization.bytes_to_human_readable(86214576) == "82.22 MiB"
@test MetagraphOptimization.bytes_to_human_readable(9241457698) ==
"8.607 GiB"
@test MetagraphOptimization.bytes_to_human_readable(3218598654367) ==
"2.927 TiB"
@test MetagraphOptimization.bytes_to_human_readable(9241457698) == "8.607 GiB"
@test MetagraphOptimization.bytes_to_human_readable(3218598654367) == "2.927 TiB"
end
println("Utility Unit Tests Complete!")