Add notebook abc model showcase, add some pretty print functions
This commit is contained in:
parent
7dd9fedf2e
commit
bef017130b
1
.gitignore
vendored
1
.gitignore
vendored
@ -27,3 +27,4 @@ Manifest.toml
|
||||
# vscode workspace directory
|
||||
.vscode
|
||||
.julia
|
||||
**/.ipynb_checkpoints/
|
||||
|
@ -10,6 +10,12 @@ Pages = ["models/interface.jl"]
|
||||
Order = [:type, :constant, :function]
|
||||
```
|
||||
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["models/print.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
||||
## ABC-Model
|
||||
|
||||
### Types
|
||||
@ -54,6 +60,13 @@ Pages = ["models/abc/compute.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
||||
### Print
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["models/abc/print.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
||||
## QED-Model
|
||||
|
||||
*To be added*
|
||||
|
@ -1,3 +1,7 @@
|
||||
# Manual
|
||||
|
||||
This will become a manual.
|
||||
## Jupyter Notebooks
|
||||
|
||||
In the `notebooks` directory are notebooks containing some examples of the usage of this repository.
|
||||
|
||||
- `abc_model_showcase`: A simple showcase of the intended usage of the ABC Model implementation.
|
||||
|
314
notebooks/abc_model_showcase.ipynb
Normal file
314
notebooks/abc_model_showcase.ipynb
Normal file
@ -0,0 +1,314 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"id": "20768e45-df62-4638-ba33-b0ccf239f1aa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"using Revise\n",
|
||||
"using MetagraphOptimization\n",
|
||||
"using BenchmarkTools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"id": "9df482a4-ca44-44c5-9ea7-7a2977d529be",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ABCModel()"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create a model identifier\n",
|
||||
"model = ABCModel()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"id": "30b16872-07f7-4d47-8ff8-8c3a849c9d4e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ABC Process: 'AB->ABBB'"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create a process in our model\n",
|
||||
"process_str = \"AB->ABBB\"\n",
|
||||
"process = parse_process(process_str, model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"id": "043bd9e2-f89a-4362-885a-8c89d4cdd76f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Graph:\n",
|
||||
" Nodes: \n",
|
||||
" Edges: 385\n",
|
||||
" Total Compute Effort: 1075.0\n",
|
||||
" Total Data Transfer: 10944.0\n",
|
||||
" Total Compute Intensity: 0.09822733918128655\n"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Total: 280, ComputeTaskS2: 24, DataTask: 143, \n",
|
||||
" ComputeTaskU: 6, ComputeTaskSum: 1, ComputeTaskS1: 36, \n",
|
||||
" ComputeTaskV: 64, ComputeTaskP: 6"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Read the graph (of the same process) from a file\n",
|
||||
"graph = parse_dag(\"../input/$process_str.txt\", model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"id": "02f01ad3-fd10-48d5-a0e0-c03dc83c80a4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Input for ABC Process: 'AB->ABBB':\n",
|
||||
" Input particles:\n",
|
||||
" A: [3.1643943055419363, 0.0, 0.0, 3.002231057221651]\n",
|
||||
" B: [3.1643943055419363, 0.0, 0.0, -3.002231057221651]\n",
|
||||
" Output Particles:\n",
|
||||
" A: [-2.256745792111763, -1.8187612014283614, 0.7623781267848754, -0.45142978877450474]\n",
|
||||
" B: [-1.2010630585601612, 0.48677829051626326, -0.3095511190586244, -0.33132683442411753]\n",
|
||||
" B: [-1.851230645629639, 1.2170428203792298, -0.6136921618583376, 0.7544823438327369]\n",
|
||||
" B: [-1.0197491147823097, 0.11494009053286842, 0.16086515413208705, 0.02827427936588541]\n"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Generate some random input data for our process\n",
|
||||
"input_data = gen_process_input(process)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"id": "083fb1be-ce2a-47f9-afb9-60a6fdfaed0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"compute_ca11d460_5e25_11ee_14ab_5ddab1542812 (generic function with 1 method)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Get the function computing the result of the process from a ProcessInput\n",
|
||||
"AB_AB3_compute = get_compute_function(graph, process)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"id": "a40c9500-8f79-4f04-b3c5-59b72a6b7ba9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"-2.133138322948753e-12"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Actually compute a result using the generated function and the input data\n",
|
||||
"result = AB_AB3_compute(input_data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"id": "80c70010",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"include(\"../examples/profiling_utilities.jl\")\n",
|
||||
"\n",
|
||||
"# We can also mute the graph by applying some operations to it\n",
|
||||
"reduce_all!(graph)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"id": "5b192b44",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The result should be the same as before (we can use execute to save having to generate the function ourselves)\n",
|
||||
"@assert result ≈ execute(graph, process, input_data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"id": "9b2f4a3f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1000-element Vector{Float64}:\n",
|
||||
" -4.414620594828263e-10\n",
|
||||
" -6.52806527801196e-13\n",
|
||||
" -1.697445561359304e-14\n",
|
||||
" -3.0968989470125384e-10\n",
|
||||
" -4.502627629291429e-15\n",
|
||||
" -1.5151443298524234e-12\n",
|
||||
" -4.6735707896483893e-11\n",
|
||||
" -4.39957245807686e-12\n",
|
||||
" -4.9303667114098105e-12\n",
|
||||
" -7.978610716067286e-12\n",
|
||||
" ⋮\n",
|
||||
" -3.274950681363404e-15\n",
|
||||
" 3.720176763468205e-14\n",
|
||||
" -1.6979650967920612e-16\n",
|
||||
" -1.2110610922665538e-11\n",
|
||||
" -3.488772363060999e-13\n",
|
||||
" -7.743825512592736e-12\n",
|
||||
" -1.1887405783378775e-11\n",
|
||||
" -1.7657864496526309e-13\n",
|
||||
" -8.099730579187646e-12"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Now we can generate a function and use it on lots of inputs\n",
|
||||
"inputs = [gen_process_input(process) for _ in 1:1000]\n",
|
||||
"AB_AB3_reduced_compute = get_compute_function(graph, process)\n",
|
||||
"\n",
|
||||
"results = AB_AB3_reduced_compute.(inputs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"id": "d43e4ff0",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"BenchmarkTools.Trial: 1338 samples with 1 evaluation.\n",
|
||||
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m2.718 ms\u001b[22m\u001b[39m … \u001b[35m7.994 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 32.43%\n",
|
||||
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m3.007 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
|
||||
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m3.736 ms\u001b[22m\u001b[39m ± \u001b[32m1.156 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m5.92% ± 11.07%\n",
|
||||
"\n",
|
||||
" \u001b[39m█\u001b[39m█\u001b[39m▃\u001b[39m▂\u001b[34m▂\u001b[39m\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▃\u001b[39m▃\u001b[39m▄\u001b[39m▂\u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
|
||||
" \u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[39m▆\u001b[39m█\u001b[32m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▆\u001b[39m▅\u001b[39m▁\u001b[39m▅\u001b[39m▄\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▁\u001b[39m▅\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▆\u001b[39m▁\u001b[39m▄\u001b[39m▆\u001b[39m▇\u001b[39m \u001b[39m█\n",
|
||||
" 2.72 ms\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 7.16 ms \u001b[0m\u001b[1m<\u001b[22m\n",
|
||||
"\n",
|
||||
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m6.17 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m143004\u001b[39m."
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"@benchmark results = AB_AB3_compute.($inputs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"id": "e18d9546",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"BenchmarkTools.Trial: 1739 samples with 1 evaluation.\n",
|
||||
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m2.178 ms\u001b[22m\u001b[39m … \u001b[35m 6.643 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 37.05%\n",
|
||||
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m2.291 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
|
||||
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m2.873 ms\u001b[22m\u001b[39m ± \u001b[32m902.626 μs\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m6.58% ± 12.21%\n",
|
||||
"\n",
|
||||
" \u001b[39m█\u001b[39m▇\u001b[34m▄\u001b[39m\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
|
||||
" \u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[32m█\u001b[39m\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[39m▅\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▅\u001b[39m▆\u001b[39m▆\u001b[39m▁\u001b[39m▁\u001b[39m▄\u001b[39m▅\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▄\u001b[39m▆\u001b[39m▅\u001b[39m▁\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▄\u001b[39m▆\u001b[39m \u001b[39m█\n",
|
||||
" 2.18 ms\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 5.97 ms \u001b[0m\u001b[1m<\u001b[22m\n",
|
||||
"\n",
|
||||
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m5.26 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m123004\u001b[39m."
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"@benchmark results = AB_AB3_reduced_compute.($inputs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"id": "8bc5dece",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Julia 1.9.3",
|
||||
"language": "julia",
|
||||
"name": "julia-1.9"
|
||||
},
|
||||
"language_info": {
|
||||
"file_extension": ".jl",
|
||||
"mimetype": "application/julia",
|
||||
"name": "julia",
|
||||
"version": "1.9.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -117,6 +117,7 @@ include("task/print.jl")
|
||||
include("task/properties.jl")
|
||||
|
||||
include("models/interface.jl")
|
||||
include("models/print.jl")
|
||||
|
||||
include("models/abc/types.jl")
|
||||
include("models/abc/particle.jl")
|
||||
@ -124,6 +125,7 @@ include("models/abc/compute.jl")
|
||||
include("models/abc/create.jl")
|
||||
include("models/abc/properties.jl")
|
||||
include("models/abc/parse.jl")
|
||||
include("models/abc/print.jl")
|
||||
|
||||
include("code_gen/main.jl")
|
||||
|
||||
|
@ -6,7 +6,7 @@ using ForwardDiff
|
||||
ComputeTaskSum() = ComputeTaskSum(0)
|
||||
|
||||
"""
|
||||
gen_process_input(in::Vector{ParticleType}, out::Vector{ParticleType})
|
||||
gen_process_input(processDescription::ABCProcessDescription)
|
||||
|
||||
Return a ProcessInput of randomly generated [`ABCParticle`](@ref)s from a [`ABCProcessDescription`](@ref). The process description can be created manually or parsed from a string using [`parse_process`](@ref).
|
||||
|
||||
|
@ -228,8 +228,14 @@ function parse_process(str::AbstractString, model::ABCModel)
|
||||
end
|
||||
|
||||
for t in types(model)
|
||||
inParticles[t] = count(x -> x == String(t)[1], inStr)
|
||||
outParticles[t] = count(x -> x == String(t)[1], outStr)
|
||||
inCount = count(x -> x == String(t)[1], inStr)
|
||||
outCount = count(x -> x == String(t)[1], outStr)
|
||||
if inCount != 0
|
||||
inParticles[t] = inCount
|
||||
end
|
||||
if outCount != 0
|
||||
outParticles[t] = outCount
|
||||
end
|
||||
end
|
||||
|
||||
if length(inStr) != sum(values(inParticles))
|
||||
|
@ -1,19 +1,18 @@
|
||||
using QEDbase
|
||||
|
||||
abstract type ABCParticle <: AbstractParticle end
|
||||
"""
|
||||
ABCModel <: AbstractPhysicsModel
|
||||
|
||||
Singleton definition for identification of the ABC-Model.
|
||||
"""
|
||||
struct ABCModel <: AbstractPhysicsModel end
|
||||
|
||||
struct ABCProcessDescription <: AbstractProcessDescription
|
||||
inParticles::Dict{Type, Int}
|
||||
outParticles::Dict{Type, Int}
|
||||
end
|
||||
"""
|
||||
ABCParticle
|
||||
|
||||
struct ABCProcessInput <: AbstractProcessInput
|
||||
process::ABCProcessDescription
|
||||
inParticles::Vector{ABCParticle}
|
||||
outParticles::Vector{ABCParticle}
|
||||
end
|
||||
Base type for all particles in the [`ABCModel`](@ref).
|
||||
"""
|
||||
abstract type ABCParticle <: AbstractParticle end
|
||||
|
||||
"""
|
||||
ParticleA <: ABCParticle
|
||||
@ -24,18 +23,53 @@ struct ParticleA <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ParticleB <: ABCParticle
|
||||
|
||||
A 'B' particle in the ABC Model.
|
||||
"""
|
||||
struct ParticleB <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ParticleC <: ABCParticle
|
||||
|
||||
A 'C' particle in the ABC Model.
|
||||
"""
|
||||
struct ParticleC <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ABCProcessDescription <: AbstractProcessDescription
|
||||
|
||||
A description of a process in the ABC-Model. Contains the input and output particles.
|
||||
|
||||
See also: [`in_particles`](@ref), [`out_particles`](@ref), [`parse_process`](@ref)
|
||||
"""
|
||||
struct ABCProcessDescription <: AbstractProcessDescription
|
||||
inParticles::Dict{Type, Int}
|
||||
outParticles::Dict{Type, Int}
|
||||
end
|
||||
|
||||
"""
|
||||
ABCProcessInput <: AbstractProcessInput
|
||||
|
||||
Input for a ABC Process. Contains the [`ABCProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
struct ABCProcessInput <: AbstractProcessInput
|
||||
process::ABCProcessDescription
|
||||
inParticles::Vector{ABCParticle}
|
||||
outParticles::Vector{ABCParticle}
|
||||
end
|
||||
|
||||
"""
|
||||
PARTICLE_MASSES
|
||||
|
||||
A constant dictionary containing the masses of the different [`ParticleType`](@ref)s.
|
||||
A constant dictionary containing the masses of the different [`ABCParticle`](@ref)s.
|
||||
"""
|
||||
const PARTICLE_MASSES = Dict{Type, Float64}(ParticleA => 1.0, ParticleB => 1.0, ParticleC => 0.0)
|
||||
|
||||
|
58
src/models/abc/print.jl
Normal file
58
src/models/abc/print.jl
Normal file
@ -0,0 +1,58 @@
|
||||
|
||||
"""
|
||||
show(io::IO, process::ABCProcessDescription)
|
||||
|
||||
Pretty print an [`ABCProcessDescription`](@ref) (no newlines).
|
||||
|
||||
```jldoctest
|
||||
julia> using MetagraphOptimization
|
||||
|
||||
julia> print(parse_process("AB->ABBB", ABCModel()))
|
||||
ABC Process: 'AB->ABBB'
|
||||
```
|
||||
"""
|
||||
function show(io::IO, process::ABCProcessDescription)
|
||||
# types() gives the types in order (ABC) instead of random like keys() would
|
||||
print(io, "ABC Process: \'")
|
||||
for type in types(ABCModel())
|
||||
for _ in 1:get(process.inParticles, type, 0)
|
||||
print(io, String(type))
|
||||
end
|
||||
end
|
||||
print(io, "->")
|
||||
for type in types(ABCModel())
|
||||
for _ in 1:get(process.outParticles, type, 0)
|
||||
print(io, String(type))
|
||||
end
|
||||
end
|
||||
print(io, "'")
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, processInput::ABCProcessInput)
|
||||
|
||||
Pretty print an [`ABCProcessInput`](@ref) (with newlines).
|
||||
"""
|
||||
function show(io::IO, processInput::ABCProcessInput)
|
||||
println(io, "Input for $(processInput.process):")
|
||||
println(io, " Input particles:")
|
||||
for particle in processInput.inParticles
|
||||
println(io, " $particle")
|
||||
end
|
||||
println(io, " Output Particles:")
|
||||
for particle in processInput.outParticles
|
||||
println(io, " $particle")
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, particle::T) where {T <: ABCParticle}
|
||||
|
||||
Pretty print an [`ABCParticle`](@ref) (no newlines).
|
||||
"""
|
||||
function show(io::IO, particle::T) where {T <: ABCParticle}
|
||||
print(io, "$(String(typeof(particle))): $(particle.momentum)")
|
||||
return nothing
|
||||
end
|
10
src/models/print.jl
Normal file
10
src/models/print.jl
Normal file
@ -0,0 +1,10 @@
|
||||
|
||||
"""
|
||||
show(io::IO, particleValue::ParticleValue)
|
||||
|
||||
Pretty print a [`ParticleValue`](@ref), no newlines.
|
||||
"""
|
||||
function show(io::IO, particleValue::ParticleValue)
|
||||
print(io, "($(particleValue.p), value: $(particleValue.v))")
|
||||
return nothing
|
||||
end
|
Loading…
x
Reference in New Issue
Block a user