18 Commits

Author SHA1 Message Date
5e5e29dc69 Add generated qed compton graph to execution test 2023-12-07 00:49:30 +01:00
86799644c4 Make diagram generation faster, add tests for it, update some notebooks 2023-12-05 17:32:05 +01:00
f78cde613a Put diagram generation in qed-model and fix things 2023-11-30 17:08:42 +01:00
3ca24f76e1 Work on diagram generation and feynman diagram representation 2023-11-30 03:50:31 +01:00
6314539f2c Correct qed implementation and test compton 2023-11-29 16:43:47 +01:00
ba0c75c8dc Add momentum conservation tests; Debug result against groundtruth 2023-11-28 15:50:18 +01:00
aa18430d29 Delete duplicated drawio 2023-11-28 12:16:36 +01:00
268841990e Work on QED Model execution 2023-11-27 19:45:51 +01:00
7ad5e78b3b Add diagram generation notebook draft 2023-11-27 15:45:42 +01:00
afec3f6e70 Add some todos, add issame and caninteract to module instead of test 2023-11-24 19:37:16 +01:00
62d572adbf Add propagation results and tests 2023-11-24 19:20:23 +01:00
c2687cdc01 Add model, particles etc., add interaction_result and tests for it, add compute task types 2023-11-24 19:20:23 +01:00
fcb7c992da Renaming of ABC Model things, add QEDprocesses/QEDbase types and use them 2023-11-24 19:20:23 +01:00
938bf216e5 Improve actions workflow by removing prepare step (#23)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#23
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-24 19:20:05 +01:00
04d5673b44 Use SafeTestsets for testing (#22)
Fixes issue #18

Reviewed-on: Rubydragon/MetagraphOptimization.jl#22
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-22 16:01:17 +01:00
b7560685d4 Optimizer interface and sample implementation (#19)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#19
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-22 13:51:54 +01:00
16274919e4 Cost Estimation interface (#14)
See issue #13

Reviewed-on: Rubydragon/MetagraphOptimization.jl#14
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-17 01:31:31 +01:00
2709eeb3dc Fix the types, add some profiling examples (#15)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#15
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-13 12:55:02 +01:00
89 changed files with 5412 additions and 1751 deletions

View File

@ -7,65 +7,8 @@ env:
JULIA_DEPOT_PATH: './.julia'
jobs:
prepare:
runs-on: arch-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Setup Julia environment
uses: https://github.com/julia-actions/setup-julia@v1.9.2
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore Cache
uses: actions/cache/restore@v3
id: cache-restore
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Check cache hit
if: steps.cache-restore.outputs.cache-hit == 'true'
run: exit 0
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Cache Julia packages
uses: actions/cache/save@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
test:
needs: prepare
runs-on: arch-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
@ -78,33 +21,8 @@ jobs:
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore cached Julia packages
uses: actions/cache/restore@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Instantiate
run: julia --project=./ -e 'using Pkg; Pkg.instantiate()'
- name: Format check
run: |
@ -120,14 +38,15 @@ jobs:
end'
- name: Run tests
run: julia --project=./ -t 4 -e 'import Pkg; Pkg.test()' -O0
run: julia --project=./ -t 4 -e 'using Pkg; Pkg.test()' -O0
- name: Run examples
run: julia --project=examples/ -t 4 -e 'include("examples/import_bench.jl")' -O3
run: |
julia --project=examples/ -e 'using Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -t 4 -e 'include("examples/import_bench.jl")' -O3
docs:
needs: prepare
runs-on: arch-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
@ -140,36 +59,10 @@ jobs:
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore cached Julia packages
uses: actions/cache/restore@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Build docs
run: julia --project=docs/ docs/make.jl
run: |
julia --project=docs/ -e 'using Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ docs/make.jl
- name: Upload artifacts
uses: actions/upload-artifact@v3

1
.gitignore vendored
View File

@ -28,3 +28,4 @@ Manifest.toml
.vscode
.julia
**/.ipynb_checkpoints/
*.bkp

View File

@ -12,6 +12,7 @@ JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
NumaAllocators = "21436f30-1b4a-4f08-87af-e26101bb5379"
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
QEDprocesses = "46de9c38-1bb3-4547-a1ec-da24d767fdad"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Roots = "f2b01f46-fcfa-551c-844a-d8ac1e96c665"
UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"

View File

@ -50,8 +50,8 @@ Problems:
For graphs AB->AB^n:
- Number of Sums should always be 1
- Number of ComputeTaskS2 should always be (n+1)!
- Number of ComputeTaskU should always be (n+3)
- Number of ComputeTaskABC_S2 should always be (n+1)!
- Number of ComputeTaskABC_U should always be (n+3)
Times are from my home machine: AMD Ryzen 7900X3D, 64GB DDR5 RAM @ 6000MHz (not necessarily up to date, check Jupyter Notebooks in `notebooks/` instead)
@ -59,9 +59,9 @@ Times are from my home machine: AMD Ryzen 7900X3D, 64GB DDR5 RAM @ 6000MHz (not
$ julia --project examples/import_bench.jl
AB->AB:
Graph:
Nodes: Total: 34, DataTask: 19, ComputeTaskP: 4,
ComputeTaskS2: 2, ComputeTaskV: 4, ComputeTaskU: 4,
ComputeTaskSum: 1
Nodes: Total: 34, DataTask: 19, ComputeTaskABC_P: 4,
ComputeTaskABC_S2: 2, ComputeTaskABC_V: 4, ComputeTaskABC_U: 4,
ComputeTaskABC_Sum: 1
Edges: 37
Total Compute Effort: 185
Total Data Transfer: 102
@ -71,9 +71,9 @@ Graph:
AB->ABBB:
Graph:
Nodes: Total: 280, DataTask: 143, ComputeTaskP: 6,
ComputeTaskS2: 24, ComputeTaskV: 64, ComputeTaskU: 6,
ComputeTaskSum: 1, ComputeTaskS1: 36
Nodes: Total: 280, DataTask: 143, ComputeTaskABC_P: 6,
ComputeTaskABC_S2: 24, ComputeTaskABC_V: 64, ComputeTaskABC_U: 6,
ComputeTaskABC_Sum: 1, ComputeTaskABC_S1: 36
Edges: 385
Total Compute Effort: 2007
Total Data Transfer: 828
@ -83,9 +83,9 @@ Graph:
AB->ABBBBB:
Graph:
Nodes: Total: 7854, DataTask: 3931, ComputeTaskP: 8,
ComputeTaskS2: 720, ComputeTaskV: 1956, ComputeTaskU: 8,
ComputeTaskSum: 1, ComputeTaskS1: 1230
Nodes: Total: 7854, DataTask: 3931, ComputeTaskABC_P: 8,
ComputeTaskABC_S2: 720, ComputeTaskABC_V: 1956, ComputeTaskABC_U: 8,
ComputeTaskABC_Sum: 1, ComputeTaskABC_S1: 1230
Edges: 11241
Total Compute Effort: 58789
Total Data Transfer: 23244
@ -95,9 +95,9 @@ Graph:
AB->ABBBBBBB:
Graph:
Nodes: Total: 438436, DataTask: 219223, ComputeTaskP: 10,
ComputeTaskS2: 40320, ComputeTaskV: 109600, ComputeTaskU: 10,
ComputeTaskSum: 1, ComputeTaskS1: 69272
Nodes: Total: 438436, DataTask: 219223, ComputeTaskABC_P: 10,
ComputeTaskABC_S2: 40320, ComputeTaskABC_V: 109600, ComputeTaskABC_U: 10,
ComputeTaskABC_Sum: 1, ComputeTaskABC_S1: 69272
Edges: 628665
Total Compute Effort: 3288131
Total Data Transfer: 1297700
@ -107,7 +107,7 @@ Graph:
AB->ABBBBBBBBB:
Graph:
Nodes: Total: 39456442, DataTask: 19728227, ComputeTaskS1: 6235290, ComputeTaskP: 12, ComputeTaskU: 12, ComputeTaskV: 9864100, ComputeTaskS2: 3628800, ComputeTaskSum: 1
Nodes: Total: 39456442, DataTask: 19728227, ComputeTaskABC_S1: 6235290, ComputeTaskABC_P: 12, ComputeTaskABC_U: 12, ComputeTaskABC_V: 9864100, ComputeTaskABC_S2: 3628800, ComputeTaskABC_Sum: 1
Edges: 56578129
Total Compute Effort: 295923153
Total Data Transfer: 175407750
@ -116,9 +116,9 @@ Graph:
ABAB->ABAB:
Graph:
Nodes: Total: 3218, DataTask: 1613, ComputeTaskP: 8,
ComputeTaskS2: 288, ComputeTaskV: 796, ComputeTaskU: 8,
ComputeTaskSum: 1, ComputeTaskS1: 504
Nodes: Total: 3218, DataTask: 1613, ComputeTaskABC_P: 8,
ComputeTaskABC_S2: 288, ComputeTaskABC_V: 796, ComputeTaskABC_U: 8,
ComputeTaskABC_Sum: 1, ComputeTaskABC_S1: 504
Edges: 4581
Total Compute Effort: 24009
Total Data Transfer: 9494
@ -128,9 +128,9 @@ Graph:
ABAB->ABC:
Graph:
Nodes: Total: 817, DataTask: 412, ComputeTaskP: 7,
ComputeTaskS2: 72, ComputeTaskV: 198, ComputeTaskU: 7,
ComputeTaskSum: 1, ComputeTaskS1: 120
Nodes: Total: 817, DataTask: 412, ComputeTaskABC_P: 7,
ComputeTaskABC_S2: 72, ComputeTaskABC_V: 198, ComputeTaskABC_U: 7,
ComputeTaskABC_Sum: 1, ComputeTaskABC_S1: 120
Edges: 1151
Total Compute Effort: 6028
Total Data Transfer: 2411

View File

@ -0,0 +1,259 @@
<mxfile host="Electron" modified="2023-11-25T19:36:18.149Z" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/21.6.1 Chrome/114.0.5735.289 Electron/25.9.4 Safari/537.36" etag="hBUSDG3lmnElLEv2sh-Z" version="21.6.1" type="device">
<diagram name="Page-1" id="pzz-rsbNjEFeZeQIA-38">
<mxGraphModel dx="1430" dy="853" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="500" pageHeight="900" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="KG5lhhUBjoQ79gfvQvIC-19" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-6" target="KG5lhhUBjoQ79gfvQvIC-18" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-6" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="190" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-20" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-7" target="KG5lhhUBjoQ79gfvQvIC-18" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-7" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="310" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-28" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-8" target="KG5lhhUBjoQ79gfvQvIC-26" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-8" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="550" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-29" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-9" target="KG5lhhUBjoQ79gfvQvIC-26" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-9" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="430" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-21" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-14" target="KG5lhhUBjoQ79gfvQvIC-6" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-14" value="U(p&lt;sub&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;IncomingAntiFermion&lt;/b&gt;&lt;/font&gt;&lt;br&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="190" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-22" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-15" target="KG5lhhUBjoQ79gfvQvIC-7" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-15" value="U(e&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="310" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-23" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-16" target="KG5lhhUBjoQ79gfvQvIC-9" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-16" value="U(p&lt;span style=&quot;font-size: 10px;&quot;&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/span&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;OutgoingAntiFermion&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="430" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-24" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-17" target="KG5lhhUBjoQ79gfvQvIC-8" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-17" value="U(e&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;OutgoingFermion&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="550" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-30" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-18" target="KG5lhhUBjoQ79gfvQvIC-25" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-18" value="V(e&lt;sub&gt;1&lt;/sub&gt;, p&lt;sub&gt;1&lt;/sub&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q: &lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;OutgoingPhoton&lt;br&gt;&lt;/b&gt;&lt;/font&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="240" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-36" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-25" target="KG5lhhUBjoQ79gfvQvIC-35" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-25" value="&lt;b&gt;&lt;font color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;AdjointBiSpinor * &lt;br&gt;DiracMatrix *&lt;br&gt;BiSpinor&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot; style=&quot;border-color: var(--border-color);&quot;&gt;Complex&lt;br&gt;&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="250" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-32" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-26" target="KG5lhhUBjoQ79gfvQvIC-27" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-26" value="V(e&lt;sub&gt;2&lt;/sub&gt;, p&lt;sub&gt;2&lt;/sub&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q&#39;: &lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingPhoton&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="480" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-37" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-27" target="KG5lhhUBjoQ79gfvQvIC-35" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="550" y="340" />
<mxPoint x="420" y="340" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-27" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * &lt;br&gt;DiracMatrix *&lt;br&gt;BiSpinor&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot; style=&quot;border-color: var(--border-color);&quot;&gt;Complex&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="490" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-39" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-35" target="KG5lhhUBjoQ79gfvQvIC-38" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-35" value="S2(q, q&#39;)&lt;br&gt;q == -q&#39;&lt;br&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;No Result Particle&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="360" y="240" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-71" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-38" target="KG5lhhUBjoQ79gfvQvIC-70" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="670" y="170" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-38" value="&lt;b style=&quot;&quot;&gt;&lt;font color=&quot;#336600&quot;&gt;inner_edge&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;Complex * propagator(q) * Complex&amp;nbsp;&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;Complex&lt;br&gt;&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="350" y="140" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-40" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-41" target="KG5lhhUBjoQ79gfvQvIC-57" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-41" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="670" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-68" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-43" target="KG5lhhUBjoQ79gfvQvIC-61" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-43" value="&lt;b style=&quot;&quot;&gt;&lt;font color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="1030" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-67" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-45" target="KG5lhhUBjoQ79gfvQvIC-57" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-45" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="790" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-46" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-47" target="KG5lhhUBjoQ79gfvQvIC-61" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-47" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="910" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-48" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-49" target="KG5lhhUBjoQ79gfvQvIC-41" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-49" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;IncomingAntiFermion&lt;/b&gt;&lt;/font&gt;&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="670" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-69" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-51" target="KG5lhhUBjoQ79gfvQvIC-43" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-51" value="U(e&lt;sub&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;OutgoingFermion&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="1030" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-52" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-53" target="KG5lhhUBjoQ79gfvQvIC-47" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-53" value="U(e&lt;sub&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="910" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-54" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-55" target="KG5lhhUBjoQ79gfvQvIC-45" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-55" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;OutgoingAntiFermion&lt;br&gt;&lt;/b&gt;&lt;/font&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="790" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-56" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-57" target="KG5lhhUBjoQ79gfvQvIC-59" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-57" value="&lt;font style=&quot;font-size: 12px;&quot;&gt;V(p&lt;sub&gt;1&lt;/sub&gt;, p&lt;sub&gt;2&lt;/sub&gt;)&lt;/font&gt;&lt;br&gt;Result Particle:&lt;br&gt;q: &lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingPhoton&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="720" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-58" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-59" target="KG5lhhUBjoQ79gfvQvIC-65" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-59" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * &lt;br&gt;DiracMatrix *&lt;br&gt;BiSpinor&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;Complex&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="730" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-60" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-61" target="KG5lhhUBjoQ79gfvQvIC-63" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-61" value="&lt;font style=&quot;font-size: 12px;&quot;&gt;V(e&lt;sub&gt;1&lt;/sub&gt;, e&lt;sub&gt;2&lt;/sub&gt;)&lt;/font&gt;&lt;br&gt;Result Particle:&lt;br&gt;q&#39;: &lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;OutgoingPhoton&lt;/b&gt;&lt;/font&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="960" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-62" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-63" target="KG5lhhUBjoQ79gfvQvIC-65" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="1030" y="340" />
<mxPoint x="900" y="340" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-63" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * &lt;br&gt;DiracMatrix * &lt;br&gt;BiSpinor &lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;Complex&lt;br&gt;&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="970" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-64" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-65" target="KG5lhhUBjoQ79gfvQvIC-66" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-65" value="S2(q, q&#39;)&lt;br&gt;q == -q&#39;&lt;br&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;No Result Particle&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="840" y="240" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-72" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-66" target="KG5lhhUBjoQ79gfvQvIC-70" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="670" y="170" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-66" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;inner_edge&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;Complex * propagator(q) * Complex&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot;&gt;Complex&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="830" y="140" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-70" value="&lt;span style=&quot;font-size: 32px;&quot;&gt;diff()&lt;/span&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#ffcd28;strokeColor=#d79b00;gradientColor=#ffa500;" parent="1" vertex="1">
<mxGeometry x="610" y="20" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-73" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="155" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-74" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="385" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-75" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="615" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-76" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="725" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-77" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="505" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-78" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="265" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-79" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="220" as="sourcePoint" />
<mxPoint x="1160" y="220" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-80" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="340" as="sourcePoint" />
<mxPoint x="1160" y="340" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-81" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="460" as="sourcePoint" />
<mxPoint x="1160" y="460" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-82" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="120" as="sourcePoint" />
<mxPoint x="1160" y="120" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-83" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="580" as="sourcePoint" />
<mxPoint x="1160" y="580" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-84" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="680" as="sourcePoint" />
<mxPoint x="1160" y="680" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-85" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="800" as="sourcePoint" />
<mxPoint x="1160" y="800" as="targetPoint" />
</mxGeometry>
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

View File

@ -0,0 +1,259 @@
<mxfile host="Electron" modified="2023-11-25T19:38:46.724Z" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/21.6.1 Chrome/114.0.5735.289 Electron/25.9.4 Safari/537.36" etag="GgWoS9drZkpaqTCZiHI_" version="21.6.1" type="device">
<diagram name="Page-1" id="pzz-rsbNjEFeZeQIA-38">
<mxGraphModel dx="1430" dy="853" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="500" pageHeight="900" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="KG5lhhUBjoQ79gfvQvIC-19" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-6" target="KG5lhhUBjoQ79gfvQvIC-18" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-6" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot;&gt;LorentzVector&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="190" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-20" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-7" target="KG5lhhUBjoQ79gfvQvIC-18" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-7" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="310" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-28" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-8" target="KG5lhhUBjoQ79gfvQvIC-26" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-8" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="550" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-29" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-9" target="KG5lhhUBjoQ79gfvQvIC-26" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-9" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;LorentzVector&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="430" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-21" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-14" target="KG5lhhUBjoQ79gfvQvIC-6" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-14" value="U(γ&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;IncomingPhoton&lt;/b&gt;&lt;/font&gt;&lt;br&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="190" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-22" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-15" target="KG5lhhUBjoQ79gfvQvIC-7" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-15" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="310" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-23" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-16" target="KG5lhhUBjoQ79gfvQvIC-9" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-16" value="U(γ&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;OutgoingPhoton&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="430" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-24" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-17" target="KG5lhhUBjoQ79gfvQvIC-8" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-17" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;OutgoingFermion&lt;br&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="550" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-30" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-18" target="KG5lhhUBjoQ79gfvQvIC-25" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-18" value="V(γ&lt;sub&gt;1&lt;/sub&gt;, p&lt;sub&gt;1&lt;/sub&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q: &lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;OutgoingFermion&lt;/b&gt;&lt;/font&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="240" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-36" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-25" target="KG5lhhUBjoQ79gfvQvIC-35" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-25" value="&lt;b&gt;&lt;font color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;LorentzVector * DiracMatrix * &lt;br&gt;BiSpinor&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot; style=&quot;border-color: var(--border-color);&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="250" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-32" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-26" target="KG5lhhUBjoQ79gfvQvIC-27" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-26" value="V(γ&lt;sub&gt;2&lt;/sub&gt;, p&lt;sub&gt;2&lt;/sub&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q&#39;: &lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="480" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-37" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-27" target="KG5lhhUBjoQ79gfvQvIC-35" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="550" y="340" />
<mxPoint x="420" y="340" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-27" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * LorentzVector * &lt;br&gt;DiracMatrix &lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot; style=&quot;border-color: var(--border-color);&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="490" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-39" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-35" target="KG5lhhUBjoQ79gfvQvIC-38" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-35" value="S2(q, q&#39;)&lt;br&gt;q == -q&#39;&lt;br&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;No Result Particle&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="360" y="240" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-71" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-38" target="KG5lhhUBjoQ79gfvQvIC-70" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="670" y="170" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-38" value="&lt;b style=&quot;&quot;&gt;&lt;font color=&quot;#336600&quot;&gt;inner_edge&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;AdjointBiSpinor * propagator(q) * BiSpinor =&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;ComplexF64&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="350" y="140" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-40" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-41" target="KG5lhhUBjoQ79gfvQvIC-57" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-41" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;LorentzVector&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="670" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-68" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-43" target="KG5lhhUBjoQ79gfvQvIC-61" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-43" value="&lt;b style=&quot;&quot;&gt;&lt;font color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt; -&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="1030" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-67" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-45" target="KG5lhhUBjoQ79gfvQvIC-57" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-45" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="790" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-46" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-47" target="KG5lhhUBjoQ79gfvQvIC-61" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-47" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;base_state&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;LorentzVector&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="910" y="600" width="120" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-48" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-49" target="KG5lhhUBjoQ79gfvQvIC-41" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-49" value="U(γ&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;IncomingPhoton&lt;/b&gt;&lt;/font&gt;&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="670" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-69" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-51" target="KG5lhhUBjoQ79gfvQvIC-43" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-51" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;1&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="1030" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-52" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-53" target="KG5lhhUBjoQ79gfvQvIC-47" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-53" value="U(γ&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#0000ff&quot;&gt;OutgoingPhoton&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;/font&gt;&lt;/b&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="910" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-54" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-55" target="KG5lhhUBjoQ79gfvQvIC-45" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-55" value="U(p&lt;sub style=&quot;border-color: var(--border-color);&quot;&gt;2&lt;/sub&gt;)&lt;br style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#0000ff&quot;&gt;&lt;b&gt;OutgoingFermion&lt;br&gt;&lt;/b&gt;&lt;/font&gt;Outer Edge" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="790" y="700" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-56" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-57" target="KG5lhhUBjoQ79gfvQvIC-59" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-57" value="V(γ&lt;sub&gt;1&lt;/sub&gt;, p&lt;span style=&quot;font-size: 10px;&quot;&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/span&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q: &lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;IncomingFermion&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="720" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-58" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-59" target="KG5lhhUBjoQ79gfvQvIC-65" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-59" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * LorentzVector * &lt;br&gt;DiracMatrix&amp;nbsp;&lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;AdjointBiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="730" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-60" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-61" target="KG5lhhUBjoQ79gfvQvIC-63" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-61" value="V(γ&lt;sub&gt;2&lt;/sub&gt;, p&lt;span style=&quot;font-size: 10px;&quot;&gt;&lt;sub&gt;1&lt;/sub&gt;&lt;/span&gt;)&lt;br&gt;Result Particle:&lt;br&gt;q&#39;: &lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;OutgoingFermion&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="960" y="480" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-62" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-63" target="KG5lhhUBjoQ79gfvQvIC-65" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="1030" y="340" />
<mxPoint x="900" y="340" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-63" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;vertex&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;LorentzVector * &lt;br&gt;DiracMatrix * &lt;br&gt;BiSpinor &lt;br&gt;=&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#cc00cc&quot;&gt;BiSpinor&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="970" y="360" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-64" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-65" target="KG5lhhUBjoQ79gfvQvIC-66" edge="1">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-65" value="S2(q, q&#39;)&lt;br&gt;q == -q&#39;&lt;br&gt;&lt;b&gt;&lt;font color=&quot;#0000ff&quot;&gt;No Result Particle&lt;/font&gt;&lt;/b&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#9AC7BF;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="840" y="240" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-72" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;strokeWidth=2;" parent="1" source="KG5lhhUBjoQ79gfvQvIC-66" target="KG5lhhUBjoQ79gfvQvIC-70" edge="1">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="670" y="170" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-66" value="&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color);&quot; color=&quot;#336600&quot;&gt;inner_edge&lt;/font&gt;&lt;/b&gt;&amp;nbsp;-&amp;gt;&lt;br&gt;AdjointBiSpinor * propagator(q) * BiSpinor =&amp;nbsp;&lt;b style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font color=&quot;#cc00cc&quot;&gt;ComplexF64&lt;/font&gt;&lt;/b&gt;" style="rounded=1;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#f5f5f5;gradientColor=#b3b3b3;strokeColor=#666666;" parent="1" vertex="1">
<mxGeometry x="830" y="140" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-70" value="&lt;font style=&quot;font-size: 32px;&quot;&gt;Σ&lt;/font&gt;" style="ellipse;whiteSpace=wrap;html=1;strokeWidth=2;fillColor=#ffcd28;strokeColor=#d79b00;gradientColor=#ffa500;" parent="1" vertex="1">
<mxGeometry x="610" y="20" width="120" height="80" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-73" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="155" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-74" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="385" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-75" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;ValueAcc&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="615" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-76" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="725" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-77" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="505" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-78" value="&lt;b&gt;&lt;font style=&quot;font-size: 22px;&quot;&gt;Particle Propagation&lt;/font&gt;&lt;/b&gt;" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="10" y="265" width="120" height="30" as="geometry" />
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-79" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="220" as="sourcePoint" />
<mxPoint x="1160" y="220" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-80" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="340" as="sourcePoint" />
<mxPoint x="1160" y="340" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-81" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="460" as="sourcePoint" />
<mxPoint x="1160" y="460" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-82" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="120" as="sourcePoint" />
<mxPoint x="1160" y="120" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-83" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="580" as="sourcePoint" />
<mxPoint x="1160" y="580" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-84" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="680" as="sourcePoint" />
<mxPoint x="1160" y="680" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="KG5lhhUBjoQ79gfvQvIC-85" value="" style="endArrow=none;dashed=1;html=1;dashPattern=1 3;strokeWidth=2;rounded=0;" parent="1" edge="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint y="800" as="sourcePoint" />
<mxPoint x="1160" y="800" as="targetPoint" />
</mxGeometry>
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

View File

@ -0,0 +1,21 @@
# Estimation
## Interface
The interface that has to be implemented for an estimator.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/interafce.jl"]
Order = [:type, :constant, :function]
```
## Global Metric Estimator
Implementation of a global metric estimator. It uses the graph properties compute effort, data transfer, and compute intensity.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/global_metric.jl"]
Order = [:type, :function]
```

View File

@ -69,4 +69,58 @@ Order = [:function]
## QED-Model
*To be added*
### Feynman Diagrams
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/diagrams.jl"]
Order = [:type, :function, :constant]
```
### Types
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/types.jl"]
Order = [:type, :constant]
```
### Particle
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/particle.jl"]
Order = [:type, :constant, :function]
```
### Parse
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/parse.jl"]
Order = [:function]
```
### Properties
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/properties.jl"]
Order = [:function]
```
### Create
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/create.jl"]
Order = [:function]
```
### Compute
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/compute.jl"]
Order = [:function]
```
### Print
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["models/qed/print.jl"]
Order = [:function]
```

View File

@ -0,0 +1,41 @@
# Optimization
## Interface
The interface that has to be implemented for an optimization algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["optimization/interafce.jl"]
Order = [:type, :constant, :function]
```
## Random Walk Optimizer
Implementation of a random walk algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/random_walk.jl"]
Order = [:type, :function]
```
## Reduction Optimizer
Implementation of a an optimizer that reduces as far as possible.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/reduce.jl"]
Order = [:type, :function]
```
## Greedy Optimizer
Implementation of a greedy optimization algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/greedy.jl"]
Order = [:type, :function]
```

File diff suppressed because one or more lines are too long

33
examples/ab5.jl Normal file
View File

@ -0,0 +1,33 @@
using MetagraphOptimization
using BenchmarkTools
println("Getting machine info")
@time machine = get_machine_info()
println("Making model")
@time model = ABCModel()
println("Making process")
process_str = "AB->ABBBBB"
@time process = parse_process(process_str, model)
println("Parsing DAG")
@time graph = parse_dag("input/$process_str.txt", model)
println("Generating input data")
@time input_data = [gen_process_input(process) for _ in 1:1000]
println("Reducing graph")
@time optimize_to_fixpoint!(ReductionOptimizer(), graph)
println("Generating compute function")
@time compute_func = get_compute_function(graph, process, machine)
println("First run, single argument")
@time compute_func(input_data[1])
println("\nBenchmarking function, 1 input")
display(@benchmark compute_func($(input_data[1])))
println("\nBenchmarking function, 1000 inputs")
display(@benchmark compute_func.($input_data))

33
examples/ab7.jl Normal file
View File

@ -0,0 +1,33 @@
using MetagraphOptimization
using BenchmarkTools
println("Getting machine info")
@time machine = get_machine_info()
println("Making model")
@time model = ABCModel()
println("Making process")
process_str = "AB->ABBBBBBB"
@time process = parse_process(process_str, model)
println("Parsing DAG")
@time graph = parse_dag("input/$process_str.txt", model)
println("Generating input data")
@time input_data = [gen_process_input(process) for _ in 1:1000]
println("Reducing graph")
@time optimize_to_fixpoint!(ReductionOptimizer(), graph)
println("Generating compute function")
@time compute_func = get_compute_function(graph, process, machine)
println("First run, single argument")
@time compute_func(input_data[1])
println("\nBenchmarking function, 1 input")
display(@benchmark compute_func($(input_data[1])))
println("\nBenchmarking function, 1000 inputs")
display(@benchmark compute_func.($input_data))

View File

@ -1,59 +0,0 @@
function random_walk!(g::DAG, n::Int64)
# the purpose here is to do "random" operations on the graph to simulate an optimizer
reset_graph!(g)
properties = get_properties(g)
for i in 1:n
# choose push or pop
if rand(Bool)
# push
opt = get_operations(g)
# choose one of fuse/split/reduce
option = rand(1:3)
if option == 1 && !isempty(opt.nodeFusions)
push_operation!(g, rand(collect(opt.nodeFusions)))
elseif option == 2 && !isempty(opt.nodeReductions)
push_operation!(g, rand(collect(opt.nodeReductions)))
elseif option == 3 && !isempty(opt.nodeSplits)
push_operation!(g, rand(collect(opt.nodeSplits)))
else
i = i - 1
end
else
# pop
if (can_pop(g))
pop_operation!(g)
else
i = i - 1
end
end
end
return nothing
end
function reduce_all!(g::DAG)
reset_graph!(g)
opt = get_operations(g)
while (!isempty(opt.nodeReductions))
push_operation!(g, pop!(opt.nodeReductions))
if (isempty(opt.nodeReductions))
opt = get_operations(g)
end
end
return nothing
end
function reduce_one!(g::DAG)
opt = get_operations(g)
if !isempty(opt.nodeReductions)
push_operation!(g, pop!(opt.nodeReductions))
end
opt = get_operations(g)
return nothing
end

View File

@ -11,7 +11,18 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Get machine and set dictionary caching strategy\n",
"machine = get_machine_info()\n",
"MetagraphOptimization.set_cache_strategy(machine.devices[1], MetagraphOptimization.LocalVariables())"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
@ -19,19 +30,19 @@
"output_type": "stream",
"text": [
"Graph:\n",
" Nodes: Total: 438436, ComputeTaskP: 10, ComputeTaskU: 10, \n",
" ComputeTaskV: 109600, ComputeTaskSum: 1, ComputeTaskS2: 40320, \n",
" ComputeTaskS1: 69272, DataTask: 219223\n",
" Edges: 628665\n",
" Total Compute Effort: 1.903443e6\n",
" Total Data Transfer: 1.8040896e7\n",
" Total Compute Intensity: 0.10550712115407128\n"
" Nodes: Total: 7854, DataTask: 3931, ComputeTaskABC_S1: 1230, \n",
" ComputeTaskABC_Sum: 1, ComputeTaskABC_U: 8, ComputeTaskABC_P: 8, \n",
" ComputeTaskABC_V: 1956, ComputeTaskABC_S2: 720\n",
" Edges: 11241\n",
" Total Compute Effort: 33915.0\n",
" Total Data Transfer: 322464.0\n",
" Total Compute Intensity: 0.10517453111044954\n"
]
}
],
"source": [
"model = ABCModel()\n",
"process_str = \"AB->ABBBBBBB\"\n",
"process_str = \"AB->ABBBBB\"\n",
"process = parse_process(process_str, model)\n",
"graph = parse_dag(\"../input/$process_str.txt\", model)\n",
"print(graph)"
@ -39,449 +50,323 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"compute__8bced4be_8f2e_11ee_37d9_3f851690d249 (generic function with 1 method)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"compute_AB_AB5 = get_compute_function(graph, process, machine)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"351.606942 seconds (1.13 G allocations: 25.949 GiB, 1.33% gc time, 0.72% compilation time)\n",
" 0.184484 seconds (2.75 M allocations: 153.561 MiB, 15.46% gc time)\n",
"Graph:\n",
" Nodes: Total: 277188, ComputeTaskP: 10, ComputeTaskU: 10, \n",
" ComputeTaskV: 69288, ComputeTaskSum: 1, ComputeTaskS2: 40320, \n",
" ComputeTaskS1: 28960, DataTask: 138599\n",
" Edges: 427105\n",
" Total Compute Effort: 1.218139e6\n",
" Total Data Transfer: 1.2235968e7\n",
" Total Compute Intensity: 0.0995539543745129\n"
" Nodes: Total: 4998, DataTask: 2503, ComputeTaskABC_S1: 516, \n",
" ComputeTaskABC_Sum: 1, ComputeTaskABC_U: 8, ComputeTaskABC_P: 8, \n",
" ComputeTaskABC_V: 1242, ComputeTaskABC_S2: 720\n",
" Edges: 7671\n",
" Total Compute Effort: 21777.0\n",
" Total Data Transfer: 253920.0\n",
" Total Compute Intensity: 0.0857632325141777\n"
]
}
],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"@time reduce_all!(graph)\n",
"@time optimize_to_fixpoint!(ReductionOptimizer(), graph)\n",
"print(graph)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 1 NUMA nodes\n",
"CUDA is non-functional\n"
]
}
],
"source": [
"# Get machine and set dictionary caching strategy\n",
"machine = get_machine_info()\n",
"MetagraphOptimization.set_cache_strategy(machine.devices[1], MetagraphOptimization.Dictionary())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2315.896312 seconds (87.18 M allocations: 132.726 GiB, 0.11% gc time, 0.04% compilation time)\n"
" 0.822702 seconds (574.85 k allocations: 48.098 MiB, 0.90% gc time)\n"
]
},
{
"data": {
"text/plain": [
"compute__8fd7c454_6214_11ee_3616_0f2435e477fe (generic function with 1 method)"
"compute__8dffb17a_8f2e_11ee_2d70_13a063f6b2e1 (generic function with 1 method)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
"output_type": "display_data"
}
],
"source": [
"@time compute_AB_AB7 = get_compute_function(graph, process, machine)"
"@time compute_AB_AB5_reduced = get_compute_function(graph, process, machine)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 1.910169 seconds (4.34 M allocations: 278.284 MiB, 6.25% gc time, 99.23% compilation time)\n"
" 0.054193 seconds (108.22 k allocations: 6.222 MiB, 92.26% compilation time)\n"
]
},
{
"data": {
"text/plain": [
"1000-element Vector{ABCProcessInput}:\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.411745173347825, 0.0, 0.0, 8.352092962924948]\n",
" B: [8.411745173347825, 0.0, 0.0, -8.352092962924948]\n",
" 8 Outgoing Particles:\n",
" A: [-2.003428483168789, 1.2386385417950023, -0.8321671195319228, 0.8871291535745444]\n",
" B: [-2.444326994820653, 1.1775023368116424, -0.9536682034633904, 1.6366855721594777]\n",
" B: [-4.289211829680359, -3.7216649121036443, 1.128125248220305, 1.50793959634144]\n",
" B: [-1.2727607454602508, 0.07512513775641204, 0.6370236198332677, -0.45659285653208986]\n",
" B: [-1.8777156401619268, -1.042329795325101, -0.5508846238377632, -1.0657817573524957]\n",
" B: [-1.1322368113474306, 0.0498922458527246, -0.2963537951915457, -0.4377732162313449]\n",
" B: [-1.4340705015357569, 0.7798902829682378, 0.144450581630926, -0.6538068364381232]\n",
" B: [-2.369739340520482, 1.4429461622447262, 0.7234742923401235, -1.4177996555214083]\n",
" A: [5.53824935935883, 0.0, 0.0, 5.447220021849539]\n",
" B: [5.53824935935883, 0.0, 0.0, -5.447220021849539]\n",
" 6 Outgoing Particles:\n",
" A: [-1.3103925957044282, 0.7331872395687581, 0.24174619498761993, 0.34802873993327305]\n",
" B: [-1.7235347423723115, -0.9221216475500805, -0.5368654338299067, 0.9121618174658171]\n",
" B: [-3.2983236636246445, -1.4122494078132704, -0.264394674616116, -2.7954581120438933]\n",
" B: [-1.4663199369248787, -0.21617929792622487, -0.41022326537895987, 0.9669940750145931]\n",
" B: [-1.1596695896410607, 0.40971989086421784, 0.1871290088754596, -0.3767570864705371]\n",
" B: [-2.118258190450336, 1.4076432228565998, 0.7826081699619032, 0.945030566100747]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.262146117199348, 0.0, 0.0, 8.201405883258813]\n",
" B: [8.262146117199348, 0.0, 0.0, -8.201405883258813]\n",
" 8 Outgoing Particles:\n",
" A: [-2.022253637967156, 0.040616190652067494, 1.5789161216660899, -0.7712872241073523]\n",
" B: [-1.085155894223277, -0.4013306445746292, 0.044561160964560184, -0.12046298778597243]\n",
" B: [-2.3099664718736963, -0.6028883246226666, 0.7721426580907682, 1.8374619682515352]\n",
" B: [-3.8528592267292674, -1.1057919702708323, -3.154341441424319, -1.6345881470237529]\n",
" B: [-1.445065980497648, -0.3803292238069696, -0.9038074225417192, 0.3559459403736899]\n",
" B: [-1.637993216461692, 0.18276067729419151, -0.6165325663294264, 1.1267244146927589]\n",
" B: [-3.0791604558286254, 1.8666082398498536, 2.1149851082876507, -0.7237684597886623]\n",
" B: [-1.091837350817336, 0.4003550554789843, 0.16407638128639515, -0.0700255046122441]\n",
" A: [6.406766539805908, 0.0, 0.0, 6.328242844232241]\n",
" B: [6.406766539805908, 0.0, 0.0, -6.328242844232241]\n",
" 6 Outgoing Particles:\n",
" A: [-1.6009185206411505, -0.5320720115654639, 1.09590848570997, -0.2807562558330809]\n",
" B: [-3.146359037361951, -0.17028519968266745, 1.7773008494544373, -2.389933018577465]\n",
" B: [-1.010135923448664, 0.06427364329577855, -0.1146419285663243, -0.05568402673627389]\n",
" B: [-3.6289281421436512, 0.6465018878980286, -0.8216898266580996, 3.328059584585744]\n",
" B: [-1.3592677632187082, 0.8038563415980269, -0.35192233894694247, -0.27852199472993183]\n",
" B: [-2.06792369279769, -0.8122746615437029, -1.5849552409930403, -0.323164288708993]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.522164300929319, 0.0, 0.0, 9.4695096480173]\n",
" B: [9.522164300929319, 0.0, 0.0, -9.4695096480173]\n",
" 8 Outgoing Particles:\n",
" A: [-2.2614545815907876, 0.09596466269330481, -1.680314037563078, -1.1320390202111377]\n",
" B: [-2.5164555101345942, 2.0544568173259474, 0.7608284478099104, 0.7299969816600982]\n",
" B: [-3.527555187469315, 3.1461533872404055, -0.4998113855480195, 1.1382236350884531]\n",
" B: [-1.5843416170605953, -0.649775322646379, 0.6368565466386346, -0.8260412390634552]\n",
" B: [-1.0715042390215452, 0.33101538188959895, -0.19275377509309963, -0.037364868271978664]\n",
" B: [-1.8269658913133924, -1.2104472444295427, -0.7036857693244948, 0.6143681099517287]\n",
" B: [-1.7510547915269752, 0.35168054121444203, 0.408535633181173, -1.3325210378384098]\n",
" B: [-4.504996783741433, -4.119048223287777, 1.270344339898973, 0.8453774386847008]\n",
" A: [4.592675400586894, 0.0, 0.0, 4.482484504731276]\n",
" B: [4.592675400586894, 0.0, 0.0, -4.482484504731276]\n",
" 6 Outgoing Particles:\n",
" A: [-1.1473149674649585, -0.35076892712815855, -0.170139004859497, -0.4053955023873595]\n",
" B: [-2.058220554606089, -0.8121547455466859, -1.4272449393744948, 0.7346076529133699]\n",
" B: [-2.0024960896606476, 1.3172479417787402, 0.7582221815549833, -0.8366286944540325]\n",
" B: [-1.0179814720237987, 0.162899519872391, -0.09860388948222289, -0.0052246328160273445]\n",
" B: [-1.834456765054589, -0.0990687609983643, 1.3606293642672649, 0.7100033355854413]\n",
" B: [-1.1248809523637056, -0.2181550279779225, -0.42286371210603335, -0.19736215884139197]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.225275339000687, 0.0, 0.0, 7.1557392157883655]\n",
" B: [7.225275339000687, 0.0, 0.0, -7.1557392157883655]\n",
" 8 Outgoing Particles:\n",
" A: [-1.5721586195862234, -0.6346644373772993, 0.7957285133297657, -0.6600756851617959]\n",
" B: [-1.0093393293662618, -0.11321130994303012, 0.07324286826550051, -0.024177745030521003]\n",
" B: [-2.7355755394886443, 0.2329840388558535, -2.4939308642531, -0.4576033371958622]\n",
" B: [-1.618399027736879, -0.47727357006920945, 1.0132042772011558, -0.6040218911217943]\n",
" B: [-1.7201610947708947, 0.01110230391313025, 0.8839000043421623, -1.0851505486038107]\n",
" B: [-1.792300907703241, 0.8101193095744785, -0.625916307414256, 1.0790171565463333]\n",
" B: [-1.5563810656498285, -1.1865287585293671, 0.12019738267353275, -0.004910793671790455]\n",
" B: [-2.4462350936994026, 1.3574724235754438, 0.2335741258552372, 1.7569228442392408]\n",
" A: [4.037101162257922, 0.0, 0.0, 3.9112895308714055]\n",
" B: [4.037101162257922, 0.0, 0.0, -3.9112895308714055]\n",
" 6 Outgoing Particles:\n",
" A: [-1.7053110482506162, -0.23947337333507246, -1.2744970749813946, 0.47581034101100217]\n",
" B: [-1.3631569288619594, 0.7221467297219651, 0.42638713494656166, -0.3935669251960867]\n",
" B: [-1.0326521624735496, -0.11131042747240362, 0.20341304874809626, 0.11226579619908084]\n",
" B: [-1.195196392865049, -0.5445059949974184, -0.16637078706558947, 0.32299907142385453]\n",
" B: [-1.1830550739590457, 0.24824882865433953, -0.423307203181585, -0.39850073880304915]\n",
" B: [-1.5948307181056223, -0.07510576257141027, 1.2343748815339113, -0.11900754463480165]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.94532861335446, 0.0, 0.0, 7.882147345374172]\n",
" B: [7.94532861335446, 0.0, 0.0, -7.882147345374172]\n",
" 8 Outgoing Particles:\n",
" A: [-2.118671714766621, -0.6322452591326608, -1.2236882164873555, -1.2615953852509143]\n",
" B: [-2.560753710001491, -1.7412395645571277, -1.5891033163317627, 0.01717533495153369]\n",
" B: [-1.5550581087132076, -0.639122838128628, -0.9624327134008909, 0.2888788525193626]\n",
" B: [-2.181477133464949, 0.4918918998013713, 1.8559068969600523, -0.2692479016749415]\n",
" B: [-1.2628370388798702, -0.4013500667990802, 0.24813196852393224, 0.6100049482124643]\n",
" B: [-1.901139724448186, 1.3625293914322611, -0.8176066997802711, 0.2989401174693193]\n",
" B: [-2.2302691928842697, -0.1867565668705846, 1.9609184768063308, 0.3066290670808993]\n",
" B: [-2.0804506035503256, 1.7462930042544484, 0.5278736037099664, 0.009214966692276028]\n",
" A: [7.636716907339512, 0.0, 0.0, 7.57096064729207]\n",
" B: [7.636716907339512, 0.0, 0.0, -7.57096064729207]\n",
" 6 Outgoing Particles:\n",
" A: [-1.8228350224036067, -0.22313230508453247, 0.05829362440621317, -1.5064997001932685]\n",
" B: [-2.467409891320565, 1.6506915327402656, -0.771321444516658, 1.3298091083892047]\n",
" B: [-3.7191367050304223, 1.01401048234514, -0.8448690579747132, -3.3301586819963456]\n",
" B: [-1.086062092991359, 0.018065163049532738, 0.4218324659828878, 0.035523096142663795]\n",
" B: [-3.708627500490809, -3.0248517041401413, 1.3840072581447456, 1.2995052961646025]\n",
" B: [-2.4693626024422626, 0.5652168310897357, -0.24794284604247502, 2.171820881493144]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.597768901835826, 0.0, 0.0, 5.507723366179557]\n",
" B: [5.597768901835826, 0.0, 0.0, -5.507723366179557]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0009073340208385, 0.03522831505376105, -0.010844681575969111, -0.021374049609080487]\n",
" B: [-1.3943823799403026, -0.886019044587247, 0.21582726795187737, -0.3356948979730148]\n",
" B: [-1.0593061926863385, 0.3261714964515558, -0.10930051701751846, -0.06160488410736567]\n",
" B: [-1.0190344437384602, 0.02512063114228613, 0.04379726771854621, -0.18942531709556668]\n",
" B: [-1.0919277601624486, -0.39612686480944176, 0.07078221355247243, -0.17429750036714983]\n",
" B: [-1.8292258091360047, 1.1565638126055895, 0.329244535677723, 0.9486966026643375]\n",
" B: [-1.7379569022732355, 0.6562121276078657, 0.7749535141539342, -0.9946491284065995]\n",
" B: [-2.0627969817140217, -0.9171504734643696, -1.3144596004610647, 0.8283491748944392]\n",
" A: [4.844757462595395, 0.0, 0.0, 4.740429819264681]\n",
" B: [4.844757462595395, 0.0, 0.0, -4.740429819264681]\n",
" 6 Outgoing Particles:\n",
" A: [-1.3377157678137663, -0.44312783214029056, -0.34462836811169034, -0.6887325226333468]\n",
" B: [-1.0287552354600262, 0.10884372468923921, -0.0798214909694111, 0.20029704855940197]\n",
" B: [-1.237602042094568, -0.1707812371296387, -0.708500409075891, -0.02279811352743621]\n",
" B: [-1.2285767946957649, -0.45314793159826366, 0.5376309116329622, -0.12251895938933055]\n",
" B: [-2.3944375695065316, 0.5631279933752329, -1.4234056115727505, 1.5460060162511446]\n",
" B: [-2.4624275156201336, 0.3950852828037212, 2.0187249680967807, -0.9122534692604332]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.860362769879496, 0.0, 0.0, 6.787089017712134]\n",
" B: [6.860362769879496, 0.0, 0.0, -6.787089017712134]\n",
" 8 Outgoing Particles:\n",
" A: [-2.1483538194490985, 1.8204047500578164, 0.1342978924269131, -0.532461036694855]\n",
" B: [-1.2136825716769264, 0.12932805245115084, -0.43609629710270903, -0.5158678699965871]\n",
" B: [-3.3642987422516573, -1.7653207470663739, 0.533955101409256, 2.630026736893018]\n",
" B: [-1.053677321951765, 0.11000921943972916, 0.04739423847128557, -0.30965732123337875]\n",
" B: [-1.2932387925896982, -0.6843810329952256, 0.045636429012288295, -0.4494513240410521]\n",
" B: [-1.1237194151971648, -0.45140047643622017, 0.19994785657222267, -0.13785422959193222]\n",
" B: [-1.7619597212239484, 1.3299261857304887, 0.561749934748497, 0.1422512233127988]\n",
" B: [-1.7617951554187332, -0.488565951181366, -1.0868851555377534, -0.8269861786480115]\n",
" A: [6.914095647194839, 0.0, 0.0, 6.841397417089481]\n",
" B: [6.914095647194839, 0.0, 0.0, -6.841397417089481]\n",
" 6 Outgoing Particles:\n",
" A: [-1.8747539146164607, -1.15195487912761, 1.0796978964166692, -0.14817101368775237]\n",
" B: [-2.0219963752169967, -0.8963094934108238, -1.380862038576808, 0.6150761447412909]\n",
" B: [-2.4839643051342004, -0.5463241040770312, 0.28470426735854887, -2.1887329948244236]\n",
" B: [-1.0870998264481033, 0.03306160941873628, 0.20168848226668348, -0.3741854069403313]\n",
" B: [-2.4584897964753116, 0.9082805780526032, -1.8726214974559325, -0.844089567623928]\n",
" B: [-3.9018870764986056, 1.6532462891441266, 1.6873928899908393, 2.9401028383351444]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.57507915889135, 0.0, 0.0, 9.522717096450755]\n",
" B: [9.57507915889135, 0.0, 0.0, -9.522717096450755]\n",
" 8 Outgoing Particles:\n",
" A: [-3.4305207411483516, 2.6682294806816835, -1.883054168339437, -0.3211401453721668]\n",
" B: [-2.185574270107571, 1.4558232366821502, 1.2235951792097912, 0.40016050668089054]\n",
" B: [-3.0259648593433583, -0.9184166853584697, -0.10930222461665634, -2.7020412923806107]\n",
" B: [-3.246659025038245, -2.493839704051011, -1.0189869044243565, 1.5110340975546257]\n",
" B: [-1.4247322676315595, 0.05954103854817788, 0.9940897925990366, -0.19519831815252583]\n",
" B: [-1.4889906300188005, 0.5912092032645169, -0.19371449043911573, -0.9110650198822441]\n",
" B: [-1.1268952499657272, 0.36236812621338876, -0.3636229828302436, 0.07975319340034331]\n",
" B: [-3.220821274529085, -1.7249146959804351, 1.350995798840981, 2.1384969781516885]\n",
" A: [4.882838018892802, 0.0, 0.0, 4.77934170349275]\n",
" B: [4.882838018892802, 0.0, 0.0, -4.77934170349275]\n",
" 6 Outgoing Particles:\n",
" A: [-1.3368922715636002, -0.024254114235374817, -0.17993280734873465, 0.8685141729118435]\n",
" B: [-1.336032053759296, 0.44580739433740213, 0.4009862518446777, -0.6522633223307408]\n",
" B: [-1.1917158881102905, 0.11587748600254362, 0.21032579337862262, -0.6020981870524788]\n",
" B: [-1.8590179700604674, -0.4659878149612763, 1.4629321849562218, 0.3140582613697155]\n",
" B: [-1.2740128533657533, -0.3900331968801154, 0.6651639498517544, 0.16893719451393388]\n",
" B: [-2.7680050009261956, 0.3185902457368207, -2.559475372682542, -0.09714811941227354]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.472852690841874, 0.0, 0.0, 8.413633740584764]\n",
" B: [8.472852690841874, 0.0, 0.0, -8.413633740584764]\n",
" 8 Outgoing Particles:\n",
" A: [-1.1530011327357317, 0.34211475449117323, -0.45923141786607913, -0.03841369149190832]\n",
" B: [-2.62915067223017, 1.042431210232047, 0.6288618003426715, -2.1048285595963105]\n",
" B: [-1.1265473249385953, -0.4344882737979479, -0.1553035746380426, 0.2370856700921221]\n",
" B: [-1.4826889242092416, -0.5889894099544346, -0.45026884678673923, -0.8054290077639529]\n",
" B: [-4.118520088756618, -2.101194203160593, -3.0008966741533745, 1.5943054265577095]\n",
" B: [-3.9992129109551517, 1.0607252636964415, 3.6847882851419875, 0.539352496783755]\n",
" B: [-1.3172538577755006, 0.4084669000294691, -0.6351790575407871, 0.4060296568803221]\n",
" B: [-1.1193304700827373, 0.2709337584638445, 0.3872294855003629, 0.17189800853826395]\n",
" A: [4.215107110349817, 0.0, 0.0, 4.094768363622244]\n",
" B: [4.215107110349817, 0.0, 0.0, -4.094768363622244]\n",
" 6 Outgoing Particles:\n",
" A: [-1.3241447475687065, 0.7510738166043768, -0.3909856211208319, 0.19072933335458914]\n",
" B: [-1.7731907344857587, 0.036019000265901324, 1.4622797510086056, -0.06816114931690141]\n",
" B: [-1.019387957593508, 0.014655316462798782, 0.19300767940790514, -0.04104954903058491]\n",
" B: [-1.6169881803397028, 0.04956396056952302, -1.0323879934365006, -0.7391679242087841]\n",
" B: [-1.6537900060652204, -1.1032956801849205, -0.08849835738509954, 0.7140924778952892]\n",
" B: [-1.0427125946467377, 0.2519835862823207, -0.14341545847407883, -0.056443188693607704]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.913538688235051, 0.0, 0.0, 5.828373685450576]\n",
" B: [5.913538688235051, 0.0, 0.0, -5.828373685450576]\n",
" 8 Outgoing Particles:\n",
" A: [-1.6813734506828508, -1.1942921586618185, -0.384476919421686, 0.5028522833318558]\n",
" B: [-1.412586238014363, 0.010275442474480664, 0.8780055986304257, -0.4737092609218783]\n",
" B: [-1.5338446207986793, 1.1234162145644635, 0.1670274754582306, -0.25043392751132176]\n",
" B: [-1.4260274101869397, 0.9023875675844153, -0.4646063309051003, -0.058239245843783906]\n",
" B: [-1.1055189977833793, -0.3699146930280028, 0.2809292901965394, -0.08008812803177658]\n",
" B: [-1.1926016738662872, 0.4242726765633766, 0.34415633034138016, -0.3519202590308968]\n",
" B: [-1.4188061371181722, 0.47356120240959365, 0.33662773751584696, 0.8218469496393668]\n",
" B: [-2.0563188480194308, -1.3697062519065082, -1.1576631818156364, -0.1103084116315648]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.062750568659298, 0.0, 0.0, 5.979711068085032]\n",
" B: [6.062750568659298, 0.0, 0.0, -5.979711068085032]\n",
" 8 Outgoing Particles:\n",
" A: [-1.1157392140073992, -0.0424317149721654, 0.4662958482482185, -0.16013033799016252]\n",
" B: [-2.395340693850968, -1.171776361305547, -1.746409249879336, 0.5609384374776449]\n",
" B: [-1.0289722654275464, 0.23139962589771268, 0.07055331234631396, 0.01613586906426155]\n",
" B: [-1.212565238145815, -0.6377842504248107, 0.04163119753237706, 0.24862129848767983]\n",
" B: [-1.8156755638105053, -0.3987185167288875, 1.2510245302740972, 0.7567290942527487]\n",
" B: [-2.003891077687212, 1.2159250459117166, 0.38048599808923245, -1.1799729400359336]\n",
" B: [-1.4663599649673638, 0.593985649692284, -0.7733488095969958, -0.44645740391848543]\n",
" B: [-1.086957119421786, 0.20940052192969777, 0.3097671729860923, 0.20413598266224653]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.088363151833832, 0.0, 0.0, 7.017470496715726]\n",
" B: [7.088363151833832, 0.0, 0.0, -7.017470496715726]\n",
" 8 Outgoing Particles:\n",
" A: [-3.1474601133746627, 0.14412280671945385, 2.7364508363525357, 1.1821889028802701]\n",
" B: [-1.256451004773104, 0.1153142495225348, -0.7455659837621855, -0.09748392231091944]\n",
" B: [-1.4964417911663928, -0.0996845872039782, -0.8492275192498467, 0.7128910421459969]\n",
" B: [-3.2499484244824526, -0.8927423628721523, -1.0242747556675866, -2.777775559729678]\n",
" B: [-1.0489067674373789, -0.31603136975662793, 0.016268502528308637, -0.008057042333727152]\n",
" B: [-1.6957667777105587, 1.0857339287179024, 0.6252297389508089, 0.5530773670555896]\n",
" B: [-1.243679438145053, 0.06348629097723194, -0.7145975145476898, 0.17904867473682565]\n",
" B: [-1.0380719865780628, -0.10019895610436466, -0.044283304604344965, 0.2561105375556422]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.842517855137334, 0.0, 0.0, 9.791586068084028]\n",
" B: [9.842517855137334, 0.0, 0.0, -9.791586068084028]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0081083393933719, 0.09315850477843095, -0.05390640772287413, 0.06854207575149836]\n",
" B: [-1.2533776879399583, -0.09567218890986252, -0.022562148977002077, -0.749195175056841]\n",
" B: [-4.199102452438099, 3.1204551726062775, 2.23725963921713, 1.3747327844190023]\n",
" B: [-5.1018332572388285, -4.999892707918183, 0.09407944148737099, -0.14465321518774693]\n",
" B: [-3.7582268429742243, 2.1814891293707577, -1.5410280493623207, -2.4475715991095703]\n",
" B: [-1.1792132348986593, 0.6125282131702711, -0.12369433042852651, -0.007263198361168502]\n",
" B: [-1.3600169327450258, -0.07835376476887727, -0.6694537001487819, 0.6287594836317273]\n",
" B: [-1.8251569626465018, -0.8337123583288142, 0.07930555593500455, 1.2766488439130985]\n",
" A: [7.2720657357811564, 0.0, 0.0, 7.202981331748843]\n",
" B: [7.2720657357811564, 0.0, 0.0, -7.202981331748843]\n",
" 6 Outgoing Particles:\n",
" A: [-1.110939233644008, -0.268184416567738, 0.24360224044987097, 0.3208131044822848]\n",
" B: [-2.6388927199644003, 0.8314814079287018, -0.21777668284358856, 2.2858186218857472]\n",
" B: [-3.473898607870094, 2.051862236379928, 2.4003392500206266, -1.046997796315806]\n",
" B: [-3.152819934613197, -1.9424358511984305, -2.028267056813039, -1.0263280422556738]\n",
" B: [-2.275152937944009, -1.7654922583464505, 0.7703768739716074, -0.6825521583027478]\n",
" B: [-1.8924280375266047, 1.0927688818039885, -1.1682746247854774, 0.14924627050619674]\n",
"\n",
" ⋮\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.861596443743153, 0.0, 0.0, 9.810763702141012]\n",
" B: [9.861596443743153, 0.0, 0.0, -9.810763702141012]\n",
" 8 Outgoing Particles:\n",
" A: [-1.8179384769334697, 0.9572508915748105, -0.9794338269553214, 0.6551949443563104]\n",
" B: [-2.1028582035167607, -0.7676665378472812, 0.6218562087985972, -1.5639678917247444]\n",
" B: [-3.1263866679666865, 2.3808322573838474, -1.6099851834448586, 0.7168535896041835]\n",
" B: [-5.177179415841987, -1.3605325795287053, 4.805481256903438, -0.9270855911989424]\n",
" B: [-1.2605754590213083, -0.023284320526100116, -0.14250915308265208, 0.7537900699744495]\n",
" B: [-2.712925004518324, -1.4343063146086636, -1.452340398698398, 1.4810249296764189]\n",
" B: [-2.3798188172675734, 0.6412170781802653, -1.487389994435021, -1.4283029321979925]\n",
" B: [-1.1455108424201939, -0.39351047462817185, 0.24432109091421514, 0.3124928815103169]\n",
" A: [6.22966038636724, 0.0, 0.0, 6.148875387375584]\n",
" B: [6.22966038636724, 0.0, 0.0, -6.148875387375584]\n",
" 6 Outgoing Particles:\n",
" A: [-1.4304429070664482, -0.33884344128192095, 0.8653360836289696, -0.42725343187224885]\n",
" B: [-1.9749814666096197, 1.3609392980219706, -0.9441991051819204, -0.39608593805462516]\n",
" B: [-2.2715747343865793, 1.2408591011012648, 1.6172984936557957, 0.06830847338590983]\n",
" B: [-1.661609068228756, -0.4012681871023404, -1.1964016761233542, 0.4105503221395213]\n",
" B: [-1.746963024762814, 1.345279186098992, -0.06451410595930414, 0.48779263162695097]\n",
" B: [-3.373749571680263, -3.2069659568379674, -0.2775196900201868, -0.1433120572255088]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [5.611571819338176, 0.0, 0.0, 5.521751378284825]\n",
" B: [5.611571819338176, 0.0, 0.0, -5.521751378284825]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0759150984150232, -0.3903007964405737, 0.045679777762273936, -0.05632002484775736]\n",
" B: [-1.021003529021616, -0.07269336486556076, 0.11388411952175649, 0.15554513267817288]\n",
" B: [-1.6939705353811365, -0.1440535362616654, -0.25084793375093056, -1.3363607550219565]\n",
" B: [-1.185801144621379, -0.31618880274591826, 0.5459120200606805, -0.09016131075324207]\n",
" B: [-1.197431131926246, 0.16472462054297168, -0.17198607315407527, -0.6141074056988615]\n",
" B: [-1.0089442324730478, -0.12314856400749492, -0.027052115631495212, -0.04550910308256443]\n",
" B: [-2.703474424566498, 0.16902217864171518, -0.14049660772763695, 2.502092358533033]\n",
" B: [-1.3366035422714058, 0.7126382651365266, -0.11509318708057305, -0.5151788918068239]\n",
" A: [4.358722688789774, 0.0, 0.0, 4.242459602373458]\n",
" B: [4.358722688789774, 0.0, 0.0, -4.242459602373458]\n",
" 6 Outgoing Particles:\n",
" A: [-1.0452779390743625, -0.2727572224505045, -0.0754336299872278, 0.11188938726967125]\n",
" B: [-1.7048247824379945, 0.4983084694471347, 0.872827621048126, 0.9467249611304639]\n",
" B: [-1.2899467751023526, 0.29644307338358544, -0.46128198344041976, -0.602746313628815]\n",
" B: [-2.1244189851466975, -1.8139000349895653, -0.4266469607437963, -0.20222526648433034]\n",
" B: [-1.4709803178987078, 1.0687795622551313, -0.1466043527374882, 0.0007118353293400601]\n",
" B: [-1.0819965779194327, 0.22312615235421782, 0.23713930586080637, -0.25435460361632983]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.775111706253933, 0.0, 0.0, 8.717946171962454]\n",
" B: [8.775111706253933, 0.0, 0.0, -8.717946171962454]\n",
" 8 Outgoing Particles:\n",
" A: [-2.2750151423103953, 1.8467170131598, 0.8729070809034145, 0.05799482008261441]\n",
" B: [-1.5756212156561644, 1.0377655822554295, 0.3001332912880399, 0.5617337616455574]\n",
" B: [-1.6945981163898138, -0.5153714693329569, 0.050834292767083435, 1.2662823142365867]\n",
" B: [-2.630307241578496, -0.5126707368632603, 1.3344949978186418, -1.9684532002212756]\n",
" B: [-3.0848917600353407, -2.827901193400985, -0.46541663267058264, -0.5503811129833626]\n",
" B: [-2.812675339815945, 2.346626876124383, -1.1757879806725677, 0.14834923648401968]\n",
" B: [-1.695817659938434, -0.3817827622891304, -0.19598317768122073, 1.3006267920675472]\n",
" B: [-1.7812969367832734, -0.9933833096532803, -0.7211818717528079, -0.8161526113116866]\n",
" A: [4.946953336826144, 0.0, 0.0, 4.844826861378569]\n",
" B: [4.946953336826144, 0.0, 0.0, -4.844826861378569]\n",
" 6 Outgoing Particles:\n",
" A: [-1.0798321354813016, -0.05701177676898147, 0.3748038410417432, -0.1493625751924078]\n",
" B: [-2.535607459805834, 0.2786802518140389, -2.1413493157456154, 0.8753659894167939]\n",
" B: [-1.1465622434125131, 0.048325266102822936, -0.30303094935893476, 0.46951239643469417]\n",
" B: [-1.0565850692648957, -0.15422821749644713, -0.2946016814579471, -0.0761282786060691]\n",
" B: [-1.3897397103611828, 0.8757386144485694, 0.40183039146109456, 0.054687093694094344]\n",
" B: [-2.6855800553265587, -0.9915041381000028, 1.96234771405966, -1.1740746257471053]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.832501783927461, 0.0, 0.0, 6.758925996589395]\n",
" B: [6.832501783927461, 0.0, 0.0, -6.758925996589395]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0114752465345387, -0.11558780230223581, -0.03776248532804595, -0.09108034372406744]\n",
" B: [-1.031154612454516, -0.04425244057817861, -0.0789748074180023, -0.23470095032271823]\n",
" B: [-2.2555952063288855, 1.7491237654517413, -0.4233804231771479, -0.9214254203222908]\n",
" B: [-2.089561973736715, 0.9235335217807571, 1.3477207222453012, -0.8348676128969853]\n",
" B: [-1.3199981586264844, -0.6902187266500668, -0.06216816149242132, -0.5119847340063199]\n",
" B: [-1.0105028642371863, -0.09317036739551621, -0.041275823376393385, -0.1035935696630954]\n",
" B: [-1.2426376312622325, -0.48126859609618416, 0.05225488689293943, -0.5565952280036419]\n",
" B: [-3.704077874674367, -1.2481593542103167, -0.7564139083462295, 3.254247858939119]\n",
" A: [5.263219273050624, 0.0, 0.0, 5.1673472029864165]\n",
" B: [5.263219273050624, 0.0, 0.0, -5.1673472029864165]\n",
" 6 Outgoing Particles:\n",
" A: [-2.399019535788919, -1.2110047848361276, -1.812263889139395, -0.06679625979229631]\n",
" B: [-2.017935306086244, -0.3374680394916718, 1.6282821358219384, 0.5539634536990483]\n",
" B: [-1.6695031594114513, 0.8270762338660977, -0.06260699981442713, 1.0484589005931164]\n",
" B: [-2.2597097606741916, 0.7611180237287621, 0.18055687193684328, -1.869327893238054]\n",
" B: [-1.073204850363539, -0.22248377596385552, 0.3188604064962904, -0.024447115284049005]\n",
" B: [-1.1070659337769053, 0.18276234269679548, -0.25282852530124955, 0.3581489140222342]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.775903429741401, 0.0, 0.0, 8.718743086485969]\n",
" B: [8.775903429741401, 0.0, 0.0, -8.718743086485969]\n",
" 8 Outgoing Particles:\n",
" A: [-1.7137666526922533, 1.1358800766324049, 0.08268488211087159, 0.7999598750311686]\n",
" B: [-1.1669696745288112, -0.04351472671445914, 0.5992401461010018, 0.028912577361687116]\n",
" B: [-3.5481649603318184, 0.4490928742123019, 1.0371640968528058, -3.21124287656006]\n",
" B: [-1.276578701414564, -0.08287623449031867, -0.6317118623642547, -0.47299559576203803]\n",
" B: [-4.955351547203613, -2.6459981607514886, 0.5026315754882429, 4.037519558961317]\n",
" B: [-2.3130557250521284, 1.4242375193555785, -1.5228161303749386, 0.05296516521446809]\n",
" B: [-1.4353464814836179, 0.25997106791735547, -0.029309860840599063, -0.9958792586507745]\n",
" B: [-1.1425731167759967, -0.4967924161613736, -0.03788284697312998, -0.23923944559576807]\n",
" A: [4.459941032222146, 0.0, 0.0, 4.346386316343583]\n",
" B: [4.459941032222146, 0.0, 0.0, -4.346386316343583]\n",
" 6 Outgoing Particles:\n",
" A: [-1.9579957774892203, 0.01711251988645602, -0.9941971785148113, 1.3583175610150744]\n",
" B: [-2.2086526478827153, 0.26811947256465357, -0.29730202477347406, -1.9281778894844153]\n",
" B: [-1.1393295497986875, -0.09576318262839165, 0.3418914140864091, 0.4147426875441645]\n",
" B: [-1.5437833884502452, -0.2526758526831343, 1.1436052762387854, 0.10765238541055888]\n",
" B: [-1.029324601398587, -0.04086809209820055, -0.11666716588470447, -0.21030384327692128]\n",
" B: [-1.040796099424839, 0.10407513495861721, -0.07733032115220424, 0.25776909879153836]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.907102929629284, 0.0, 0.0, 8.850789942090511]\n",
" B: [8.907102929629284, 0.0, 0.0, -8.850789942090511]\n",
" 8 Outgoing Particles:\n",
" A: [-2.946046511363992, -0.9439001466724447, 2.1873638734369836, 1.4155146927582347]\n",
" B: [-3.7848309582649415, -2.22832689875391, -0.18756115269295068, -2.885190709282662]\n",
" B: [-1.0159875652570234, 0.04172671107403079, -0.15271016054388648, 0.08467125371989566]\n",
" B: [-2.0867601165869685, -1.8155383548303043, -0.021995043965926685, -0.24063350631004576]\n",
" B: [-4.34790862339958, 3.6266859724946396, -1.8990793068549607, 1.0700261868843775]\n",
" B: [-1.1578951917200673, 0.35622580432348594, 0.23734793715600985, 0.3968506117802061]\n",
" B: [-1.4421363377447174, 1.0156020669389267, -0.20020339434090184, -0.0907097523285523]\n",
" B: [-1.0326405549212787, -0.052475154574424254, 0.03683724780563263, 0.24947122277854633]\n",
" A: [5.6127229037846575, 0.0, 0.0, 5.522921183094041]\n",
" B: [5.6127229037846575, 0.0, 0.0, -5.522921183094041]\n",
" 6 Outgoing Particles:\n",
" A: [-1.3401191006255044, 0.07455340773270878, 0.8329539127008466, 0.3107229836576332]\n",
" B: [-2.2407608326391446, 1.9616328357565815, 0.2748188274329855, 0.3122184153114968]\n",
" B: [-1.9353505325144305, 0.5041718248979296, 0.4986811623094062, -1.4975678792765024]\n",
" B: [-1.1665291383852119, -0.5919830552573446, -0.0003589073718047799, 0.10171609595055851]\n",
" B: [-1.3532183234755, -0.2764818233423043, 0.8493370095656062, 0.18271364627008788]\n",
" B: [-3.1894678799295257, -1.671893189787572, -2.45543200463704, 0.5901967380867258]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.294285658794556, 0.0, 0.0, 6.214340830249562]\n",
" B: [6.294285658794556, 0.0, 0.0, -6.214340830249562]\n",
" 8 Outgoing Particles:\n",
" A: [-1.06844272609547, -0.2848922847204133, 0.15179083391454987, -0.19330232226393051]\n",
" B: [-2.114647837734541, -1.6956804594706658, -0.38950327120442063, 0.6668511518515798]\n",
" B: [-1.494217345848325, 0.7529614584695401, -0.5432224448027106, -0.6088053006963738]\n",
" B: [-1.3783311635115514, 0.9215501628423943, 0.0395584401371469, -0.2213079833313275]\n",
" B: [-1.7816982863175768, 0.5393674002906785, 0.38766524831377364, 1.316528482874748]\n",
" B: [-1.659172767477475, 0.17135237894801714, -1.2297516401309854, -0.45956886117628726]\n",
" B: [-1.55277617510909, -0.23319042207457166, 1.041131562383322, 0.522284545863997]\n",
" B: [-1.5392850154950812, -0.17146823428497893, 0.5423312713893238, -1.022679713122405]\n",
" A: [4.8915558702989275, 0.0, 0.0, 4.788247991933574]\n",
" B: [4.8915558702989275, 0.0, 0.0, -4.788247991933574]\n",
" 6 Outgoing Particles:\n",
" A: [-1.7166600698631052, -0.6792891539923208, 0.6748994636717233, 1.0148885429772172]\n",
" B: [-2.5106233942424825, -0.7525848308448442, -1.9630692909736174, 0.9397897950798489]\n",
" B: [-1.0591214238384126, 0.22224342472975844, 0.26723772059994233, -0.030496742226701214]\n",
" B: [-2.107615205886531, 1.2019506202258687, 1.111787687227206, -0.8725163042331971]\n",
" B: [-1.1276654384352531, 0.3419112314983172, -0.15371273194576066, -0.3620751950278375]\n",
" B: [-1.2614262083320695, -0.33423129161677956, 0.06285715142050609, -0.689590096569332]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.965556009635571, 0.0, 0.0, 6.8934005050751415]\n",
" B: [6.965556009635571, 0.0, 0.0, -6.8934005050751415]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0775179795487104, -0.05690318568456522, -0.2919638065794134, 0.269377354945329]\n",
" B: [-3.216279237662679, -2.600571207682032, 0.23217633942174215, 1.5898351096286563]\n",
" B: [-1.9852997763312183, 1.2696870590322706, -0.6412445999499571, -0.9581833525279955]\n",
" B: [-1.9885313318262752, 0.8019078287339996, 1.2060162608136897, 0.9255946577864792]\n",
" B: [-1.4288503016026572, 0.2805632486843285, 0.07929023042776773, -0.9780646743628009]\n",
" B: [-1.3652585458391595, -0.12810083240879516, 0.7809145290728301, -0.4875382774777694]\n",
" B: [-1.8158888731893035, 0.7439741257624499, -1.2924797037897653, -0.2710186621991885]\n",
" B: [-1.0534859732711408, -0.3105570364376559, -0.07270924941689365, -0.0900021557927108]\n",
" A: [7.730105975946025, 0.0, 0.0, 7.665150905191394]\n",
" B: [7.730105975946025, 0.0, 0.0, -7.665150905191394]\n",
" 6 Outgoing Particles:\n",
" A: [-1.5069861693238755, -0.14569717271308374, -1.0624243147247645, 0.3478997325070473]\n",
" B: [-1.3943234172777221, -0.04432112759455558, 0.08353004942916775, 0.9670554071303941]\n",
" B: [-2.959534510858716, -2.3414048211285614, 1.2349523309699664, 0.8669260203682391]\n",
" B: [-3.9504084752062516, -1.3395798731389539, -0.8585843373250325, -3.4747785282176675]\n",
" B: [-3.4956434330579116, 2.5236614743308494, -0.431975773525167, 2.1596418001942994]\n",
" B: [-2.153315946167574, 1.3473415202443053, 1.0345020451758309, -0.8667444319823133]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" Input for ABC Process: 'AB->ABBBBB':\n",
" 2 Incoming particles:\n",
" A: [6.43062328219917, 0.0, 0.0, 6.352394493225528]\n",
" B: [6.43062328219917, 0.0, 0.0, -6.352394493225528]\n",
" 8 Outgoing Particles:\n",
" A: [-2.125364788369443, -1.214725294501684, 0.4075454777366224, 1.369497946736289]\n",
" B: [-1.1032249572940587, -0.2977536437640783, 0.35819035202044425, 0.012155070594697458]\n",
" B: [-2.225917349319406, 1.3039585629995813, -0.8668848261688078, 1.2259326287114942]\n",
" B: [-2.717025897056506, -0.9721840017189309, 0.6274004665152297, -2.2457641565164295]\n",
" B: [-1.000557419196324, 0.013685057618434337, 0.015873673340379625, 0.025997976872664537]\n",
" B: [-1.1652637249339481, 0.20750251779397902, -0.05219673300317853, -0.5586212982154317]\n",
" B: [-1.4667402310584912, 0.9160649085291783, -0.533306342231441, -0.16654228923208916]\n",
" B: [-1.057152197170161, 0.043451893043520345, 0.0433779317907512, 0.3373441210488047]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [8.156196486154876, 0.0, 0.0, 8.094661272762755]\n",
" B: [8.156196486154876, 0.0, 0.0, -8.094661272762755]\n",
" 8 Outgoing Particles:\n",
" A: [-1.4617318374080812, 0.10404421660552193, -0.19476289320497314, -1.0430254938944576]\n",
" B: [-2.745518719911882, 2.0283487429720055, -0.01415841484271091, -1.556751090431481]\n",
" B: [-1.193795120882441, -0.223211890483827, 0.20666745479885903, 0.5767250694363129]\n",
" B: [-1.0771186742980503, 0.29121400254582763, -0.18584437613704033, 0.20209134345899718]\n",
" B: [-2.9756813564276348, 0.7747616688600099, 0.31071107817153876, 2.6754219325851647]\n",
" B: [-1.8605025819101852, -0.3441559100391822, 0.5570133470539003, 1.4257498722017754]\n",
" B: [-3.3546424693401353, -1.4228183303706836, -0.7768040014609222, -2.7614832317390525]\n",
" B: [-1.6434022121313414, -1.2081825000896715, 0.0971778056213486, 0.48127159838273986]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [9.631814348202784, 0.0, 0.0, 9.579762399884718]\n",
" B: [9.631814348202784, 0.0, 0.0, -9.579762399884718]\n",
" 8 Outgoing Particles:\n",
" A: [-2.4271747113709625, -0.9216752449526319, 0.35006248470601437, 1.9796838331313595]\n",
" B: [-1.926574191117535, -0.6155920425308834, -0.36855158619622796, 1.4821957628346814]\n",
" B: [-2.809711053334662, 0.053095841327541846, -2.415282611989454, -1.0286238083410733]\n",
" B: [-2.069340346061984, 0.0706218659128716, 1.6880494984307581, 0.6539655271821153]\n",
" B: [-1.600891859223819, 0.522182956459051, 1.0136801062226364, -0.5124766796267364]\n",
" B: [-2.3653602811566903, 0.7359929823506941, 2.003935313635875, 0.19361520696286152]\n",
" B: [-4.134587420071929, 0.11270979705086029, -1.0448676862999513, -3.871738776569513]\n",
" B: [-1.9299888340679847, 0.04266384438249662, -1.2270255185096508, 1.1033789344263045]\n",
"\n",
" Input for ABC Process: 'AB->ABBBBBBB':\n",
" 2 Incoming particles:\n",
" A: [7.383091586636561, 0.0, 0.0, 7.31505580133628]\n",
" B: [7.383091586636561, 0.0, 0.0, -7.31505580133628]\n",
" 8 Outgoing Particles:\n",
" A: [-1.0026822379766207, 0.02425303574920085, -0.0683120173174935, 0.010813366763733786]\n",
" B: [-3.2851307251831745, -2.830568076855887, -0.9156122597784988, 0.9703723169846757]\n",
" B: [-2.028220232462834, 1.6810294384373135, 0.4923274291375999, -0.21314558638988076]\n",
" B: [-1.5191535227395792, -0.17123543395193966, -1.1293131485074372, -0.05619309939470401]\n",
" B: [-1.1059696544762567, 0.2375361941082015, -0.40208228112542477, -0.07124094550113935]\n",
" B: [-1.371740281577803, -0.2278482692103191, -0.6986437390927988, -0.5845113276468179]\n",
" B: [-1.2867512190171768, 0.6015837296464805, -0.16735271525316733, -0.5155761675681034]\n",
" B: [-3.166535299839676, 0.6852493820769491, 2.888988731937221, 0.4594814427522358]\n"
" A: [5.140973354732315, 0.0, 0.0, 5.042777710158126]\n",
" B: [5.140973354732315, 0.0, 0.0, -5.042777710158126]\n",
" 6 Outgoing Particles:\n",
" A: [-2.1212395395513415, 0.5721186152245487, -1.464674439391297, 1.013442776314144]\n",
" B: [-1.4152359585953729, 0.6568206137784666, 0.5137348552056548, -0.5545773150462135]\n",
" B: [-1.6621060291271548, -0.07490000906447869, -1.013680695206552, 0.8540713605247167]\n",
" B: [-1.602034710373159, -1.201656230753467, -0.11487974312683813, 0.3306662379967043]\n",
" B: [-1.6826459861655199, -0.324056691191041, 0.7444127790391002, -1.082651555236741]\n",
" B: [-1.7986844856520843, 0.3716737020059716, 1.3350872434799315, -0.5609515045526104]\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
"output_type": "display_data"
}
],
"source": [
@ -490,171 +375,37 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Internal error: stack overflow in type inference of materialize(Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{1}, Nothing, typeof(MetagraphOptimization.compute__8fd7c454_6214_11ee_3616_0f2435e477fe), Tuple{Array{MetagraphOptimization.ABCProcessInput, 1}}}).\n",
"This might be caused by recursion over very long tuples or argument lists.\n"
]
},
{
"ename": "LoadError",
"evalue": "StackOverflowError:",
"output_type": "error",
"traceback": [
"StackOverflowError:",
"",
"Stacktrace:",
" [1] get",
" @ ./iddict.jl:102 [inlined]",
" [2] in",
" @ ./iddict.jl:189 [inlined]",
" [3] haskey",
" @ ./abstractdict.jl:17 [inlined]",
" [4] findall(sig::Type, table::Core.Compiler.CachedMethodTable{Core.Compiler.InternalMethodTable}; limit::Int64)",
" @ Core.Compiler ./compiler/methodtable.jl:120",
" [5] findall",
" @ ./compiler/methodtable.jl:114 [inlined]",
" [6] find_matching_methods(argtypes::Vector{Any}, atype::Any, method_table::Core.Compiler.CachedMethodTable{Core.Compiler.InternalMethodTable}, union_split::Int64, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:336",
" [7] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:80",
" [8] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [9] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [10] abstract_apply(interp::Core.Compiler.NativeInterpreter, argtypes::Vector{Any}, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1566",
" [11] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1855",
" [12] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [13] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [14] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [15] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [16] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2682",
" [17] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [18] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [19] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [20] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [21] typeinf_edge(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector, caller::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:932",
" [22] abstract_call_method(interp::Core.Compiler.NativeInterpreter, method::Method, sig::Any, sparams::Core.SimpleVector, hardlimit::Bool, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:611",
" [23] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:152",
"--- the last 16 lines are repeated 413 more times ---",
" [6632] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [6633] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6634] abstract_apply(interp::Core.Compiler.NativeInterpreter, argtypes::Vector{Any}, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1566",
" [6635] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1855",
" [6636] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6637] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [6638] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [6639] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [6640] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2658",
" [6641] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [6642] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [6643] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [6644] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [6645] typeinf_edge(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector, caller::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:932",
" [6646] abstract_call_method(interp::Core.Compiler.NativeInterpreter, method::Method, sig::Any, sparams::Core.SimpleVector, hardlimit::Bool, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:611",
" [6647] abstract_call_gf_by_type(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, atype::Any, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:152",
" [6648] abstract_call_known(interp::Core.Compiler.NativeInterpreter, f::Any, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Int64)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1949",
" [6649] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState, max_methods::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2020",
" [6650] abstract_call(interp::Core.Compiler.NativeInterpreter, arginfo::Core.Compiler.ArgInfo, si::Core.Compiler.StmtInfo, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:1999",
" [6651] abstract_eval_statement_expr(interp::Core.Compiler.NativeInterpreter, e::Expr, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState, mi::Nothing)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2183",
" [6652] abstract_eval_statement(interp::Core.Compiler.NativeInterpreter, e::Any, vtypes::Vector{Core.Compiler.VarState}, sv::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2396",
" [6653] abstract_eval_basic_statement(interp::Core.Compiler.NativeInterpreter, stmt::Any, pc_vartable::Vector{Core.Compiler.VarState}, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2682",
" [6654] typeinf_local(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2867",
" [6655] typeinf_nocycle(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/abstractinterpretation.jl:2955",
" [6656] _typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:246",
" [6657] typeinf(interp::Core.Compiler.NativeInterpreter, frame::Core.Compiler.InferenceState)",
" @ Core.Compiler ./compiler/typeinfer.jl:216",
" [6658] typeinf",
" @ ./compiler/typeinfer.jl:12 [inlined]",
" [6659] typeinf_type(interp::Core.Compiler.NativeInterpreter, method::Method, atype::Any, sparams::Core.SimpleVector)",
" @ Core.Compiler ./compiler/typeinfer.jl:1079",
" [6660] return_type(interp::Core.Compiler.NativeInterpreter, t::DataType)",
" @ Core.Compiler ./compiler/typeinfer.jl:1140",
" [6661] return_type(f::Any, t::DataType)",
" @ Core.Compiler ./compiler/typeinfer.jl:1112",
" [6662] combine_eltypes(f::Function, args::Tuple{Vector{ABCProcessInput}})",
" @ Base.Broadcast ./broadcast.jl:730",
" [6663] copy(bc::Base.Broadcast.Broadcasted{Style}) where Style",
" @ Base.Broadcast ./broadcast.jl:895",
" [6664] materialize(bc::Base.Broadcast.Broadcasted)",
" @ Base.Broadcast ./broadcast.jl:873",
" [6665] var\"##core#293\"()",
" @ Main ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:489",
" [6666] var\"##sample#294\"(::Tuple{}, __params::BenchmarkTools.Parameters)",
" @ Main ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:495",
" [6667] _run(b::BenchmarkTools.Benchmark, p::BenchmarkTools.Parameters; verbose::Bool, pad::String, kwargs::Base.Pairs{Symbol, Integer, NTuple{4, Symbol}, NamedTuple{(:samples, :evals, :gctrial, :gcsample), Tuple{Int64, Int64, Bool, Bool}}})",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:99",
" [6668] #invokelatest#2",
" @ ./essentials.jl:821 [inlined]",
" [6669] invokelatest",
" @ ./essentials.jl:816 [inlined]",
" [6670] #run_result#45",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:34 [inlined]",
" [6671] run_result",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:34 [inlined]",
" [6672] run(b::BenchmarkTools.Benchmark, p::BenchmarkTools.Parameters; progressid::Nothing, nleaves::Float64, ndone::Float64, kwargs::Base.Pairs{Symbol, Integer, NTuple{5, Symbol}, NamedTuple{(:verbose, :samples, :evals, :gctrial, :gcsample), Tuple{Bool, Int64, Int64, Bool, Bool}}})",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:117",
" [6673] run (repeats 2 times)",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:117 [inlined]",
" [6674] #warmup#54",
" @ ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:169 [inlined]",
" [6675] warmup(item::BenchmarkTools.Benchmark)",
" @ BenchmarkTools ~/.julia/packages/BenchmarkTools/0owsb/src/execution.jl:168"
]
"data": {
"text/plain": [
"BenchmarkTools.Trial: 231 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m18.197 ms\u001b[22m\u001b[39m … \u001b[35m27.498 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 8.36%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m21.868 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m21.644 ms\u001b[22m\u001b[39m ± \u001b[32m 1.609 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m1.21% ± 2.71%\n",
"\n",
" \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m▃\u001b[34m█\u001b[39m\u001b[39m▁\u001b[39m \u001b[39m▅\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▃\u001b[39m▃\u001b[39m▁\u001b[39m▅\u001b[39m▇\u001b[39m▃\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▃\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m▅\u001b[39m▄\u001b[39m▅\u001b[39m▃\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m▅\u001b[39m▇\u001b[39m▅\u001b[39m▅\u001b[32m▆\u001b[39m\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▆\u001b[39m▇\u001b[39m▄\u001b[39m▅\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m▅\u001b[39m▃\u001b[39m▁\u001b[39m▁\u001b[39m▃\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▁\u001b[39m▃\u001b[39m▃\u001b[39m▁\u001b[39m▃\u001b[39m▁\u001b[39m▁\u001b[39m▃\u001b[39m \u001b[39m▃\n",
" 18.2 ms\u001b[90m Histogram: frequency by time\u001b[39m 25.6 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m6.78 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m17003\u001b[39m."
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"using BenchmarkTools\n",
"@benchmark compute_AB_AB7.(inputs)"
"#compute_bench = @benchmark compute_AB_AB5.(inputs)\n",
"compute_bench_reduced = @benchmark compute_AB_AB5_reduced.(inputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": []
@ -662,7 +413,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.3",
"display_name": "Julia 1.9.4",
"language": "julia",
"name": "julia-1.9"
},
@ -670,7 +421,7 @@
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
"version": "1.9.4"
}
},
"nbformat": 4,

View File

@ -97,7 +97,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Total: 280, ComputeTaskP"
"Total: 280, ComputeTaskABC_P"
]
},
{
@ -119,9 +119,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
": 6, ComputeTaskU: 6, \n",
" ComputeTaskV: 64, ComputeTaskSum: 1, ComputeTaskS2: 24, \n",
" ComputeTaskS1: 36, DataTask: 143"
": 6, ComputeTaskABC_U: 6, \n",
" ComputeTaskABC_V: 64, ComputeTaskABC_Sum: 1, ComputeTaskABC_S2: 24, \n",
" ComputeTaskABC_S1: 36, DataTask: 143"
]
}
],
@ -211,10 +211,8 @@
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"\n",
"# We can also mute the graph by applying some operations to it\n",
"reduce_all!(graph)"
"optimize_to_fixpoint!(ReductionOptimizer(), graph)"
]
},
{

451
notebooks/diagram_gen.ipynb Normal file
View File

@ -0,0 +1,451 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"using Revise; using QEDbase; using QEDprocesses; using MetagraphOptimization; using BenchmarkTools; using DataStructures\n",
"import MetagraphOptimization.gen_diagrams"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Diagram 1: Initial Particles: [k_i_1, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_i_1 -> e_i_2, k_o_1 + e_o_1 -> e_o_2]\n",
" Tie: e_i_2 -- e_o_2\n",
"\n",
"Diagram 2: Initial Particles: [k_i_1, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_1 -> e_o_2, e_i_1 + k_o_1 -> e_i_2]\n",
" Tie: e_o_2 -- e_i_2\n",
"\n"
]
}
],
"source": [
"# Compton Scattering\n",
"fd = FeynmanDiagram(parse_process(\"ke->ke\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 6044 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m490.857 μs\u001b[22m\u001b[39m … \u001b[35m 3.657 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 77.38%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m800.314 μs \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m825.263 μs\u001b[22m\u001b[39m ± \u001b[32m208.306 μs\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m1.62% ± 5.53%\n",
"\n",
" \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▃\u001b[39m█\u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m▂\u001b[39m▃\u001b[39m▃\u001b[39m▂\u001b[39m▃\u001b[39m▃\u001b[39m▄\u001b[39m▅\u001b[34m▅\u001b[39m\u001b[39m▅\u001b[39m▃\u001b[32m▂\u001b[39m\u001b[39m▁\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▃\u001b[39m▆\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▃\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[32m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▆\u001b[39m▆\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m \u001b[39m▅\n",
" 491 μs\u001b[90m Histogram: frequency by time\u001b[39m 1.04 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m280.03 KiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m2709\u001b[39m."
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 6 Diagrams for 2-Photon Compton\n",
"Diagram 1: Initial Particles: [k_i_1, k_i_2, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_i_1 -> e_i_2, k_i_2 + e_o_1 -> e_o_2]\n",
" Virtuality Level 2 Vertices: [k_o_1 + e_i_2 -> e_i_3]\n",
" Tie: e_o_2 -- e_i_3\n",
"\n"
]
}
],
"source": [
"# 2-Photon Compton Scattering\n",
"two_k_compton = FeynmanDiagram(parse_process(\"kke->ke\", QEDModel()))\n",
"\n",
"display(@benchmark gen_diagrams(two_k_compton))\n",
"diagrams = gen_diagrams(two_k_compton)\n",
"\n",
"println(\"Found $(length(diagrams)) Diagrams for 2-Photon Compton\")\n",
"println(\"Diagram 1: $(first(diagrams))\")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 1167 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m2.581 ms\u001b[22m\u001b[39m … \u001b[35m 7.394 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 38.39%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m4.278 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m4.284 ms\u001b[22m\u001b[39m ± \u001b[32m550.104 μs\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m1.84% ± 6.28%\n",
"\n",
" \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▃\u001b[39m▃\u001b[39m▅\u001b[39m▅\u001b[34m▃\u001b[39m\u001b[39m▃\u001b[39m▇\u001b[39m█\u001b[39m▄\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▄\u001b[39m█\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m▄\u001b[39m▆\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▆\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m \u001b[39m▃\n",
" 2.58 ms\u001b[90m Histogram: frequency by time\u001b[39m 6.46 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m1.71 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m15410\u001b[39m."
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 24 Diagrams for 3-Photon Compton\n",
"Diagram 1: Initial Particles: [k_i_1, k_i_2, k_i_3, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_2 + e_o_1 -> e_o_2, k_i_3 + e_i_1 -> e_i_2]\n",
" Virtuality Level 2 Vertices: [k_i_1 + e_o_2 -> e_o_3, k_o_1 + e_i_2 -> e_i_3]\n",
" Tie: e_o_3 -- e_i_3\n",
"\n"
]
}
],
"source": [
"# 3-Photon Compton Scattering\n",
"three_k_compton = FeynmanDiagram(parse_process(\"kkke->ke\", QEDModel()))\n",
"\n",
"display(@benchmark gen_diagrams(three_k_compton))\n",
"diagrams = gen_diagrams(three_k_compton)\n",
"\n",
"println(\"Found $(length(diagrams)) Diagrams for 3-Photon Compton\")\n",
"println(\"Diagram 1: $(first(diagrams))\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 141 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m31.255 ms\u001b[22m\u001b[39m … \u001b[35m42.658 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 4.92%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m35.749 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m4.34%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m35.690 ms\u001b[22m\u001b[39m ± \u001b[32m 2.009 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m3.04% ± 2.83%\n",
"\n",
" \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▆\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▃\u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m▃\u001b[39m▁\u001b[39m▃\u001b[39m▁\u001b[39m \u001b[39m█\u001b[34m▆\u001b[39m\u001b[39m▁\u001b[39m▁\u001b[39m▆\u001b[39m▁\u001b[39m▁\u001b[39m▃\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m▃\u001b[39m▆\u001b[39m▁\u001b[39m▆\u001b[39m█\u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \n",
" \u001b[39m▇\u001b[39m▄\u001b[39m▄\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▄\u001b[39m▇\u001b[39m▇\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▇\u001b[39m▄\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▄\u001b[39m▇\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▁\u001b[39m█\u001b[39m▄\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▄\u001b[39m█\u001b[39m▇\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[39m▁\u001b[39m█\u001b[39m▄\u001b[39m▁\u001b[39m▄\u001b[39m▇\u001b[39m█\u001b[39m▇\u001b[39m▄\u001b[39m \u001b[39m▄\n",
" 31.3 ms\u001b[90m Histogram: frequency by time\u001b[39m 39.2 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m23.29 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m171048\u001b[39m."
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 120 Diagrams for 4-Photon Compton\n",
"Diagram 1: Initial Particles: [k_i_1, k_i_2, k_i_3, k_i_4, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_1 -> e_o_2, e_i_1 + k_o_1 -> e_i_2]\n",
" Virtuality Level 2 Vertices: [k_i_3 + e_o_2 -> e_o_3, k_i_2 + e_i_2 -> e_i_3]\n",
" Virtuality Level 3 Vertices: [k_i_4 + e_o_3 -> e_o_4]\n",
" Tie: e_i_3 -- e_o_4\n",
"\n"
]
}
],
"source": [
"# 4-Photon Compton Scattering\n",
"four_k_compton = FeynmanDiagram(parse_process(\"kkkke->ke\", QEDModel()))\n",
"\n",
"display(@benchmark gen_diagrams(four_k_compton))\n",
"diagrams = gen_diagrams(four_k_compton)\n",
"\n",
"println(\"Found $(length(diagrams)) Diagrams for 4-Photon Compton\")\n",
"println(\"Diagram 1: $(first(diagrams))\")"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BenchmarkTools.Trial: 10 samples with 1 evaluation.\n",
" Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m471.789 ms\u001b[22m\u001b[39m … \u001b[35m527.196 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m6.00% … 7.35%\n",
" Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m499.068 ms \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m6.98%\n",
" Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m502.132 ms\u001b[22m\u001b[39m ± \u001b[32m 17.383 ms\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m6.79% ± 0.77%\n",
"\n",
" \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m█\u001b[39m▁\u001b[39m \u001b[34m▁\u001b[39m\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[32m \u001b[39m\u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m▁\u001b[39m \u001b[39m \n",
" \u001b[39m█\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m█\u001b[39m█\u001b[39m▁\u001b[34m█\u001b[39m\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[32m▁\u001b[39m\u001b[39m▁\u001b[39m█\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m█\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m█\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m█\u001b[39m█\u001b[39m \u001b[39m▁\n",
" 472 ms\u001b[90m Histogram: frequency by time\u001b[39m 527 ms \u001b[0m\u001b[1m<\u001b[22m\n",
"\n",
" Memory estimate\u001b[90m: \u001b[39m\u001b[33m627.12 MiB\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m3747679\u001b[39m."
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 720 Diagrams for 5-Photon Compton\n",
"Diagram 1: Initial Particles: [k_i_1, k_i_2, k_i_3, k_i_4, k_i_5, e_i_1, k_o_1, e_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_i_1 -> e_i_2, k_i_4 + e_o_1 -> e_o_2]\n",
" Virtuality Level 2 Vertices: [k_i_3 + e_i_2 -> e_i_3, k_i_5 + e_o_2 -> e_o_3]\n",
" Virtuality Level 3 Vertices: [k_i_2 + e_i_3 -> e_i_4, k_o_1 + e_o_3 -> e_o_4]\n",
" Tie: e_i_4 -- e_o_4\n",
"\n"
]
}
],
"source": [
"# 5-Photon Compton Scattering\n",
"five_k_compton = FeynmanDiagram(parse_process(\"kkkkke->ke\", QEDModel()))\n",
"\n",
"display(@benchmark gen_diagrams(five_k_compton))\n",
"diagrams = gen_diagrams(five_k_compton)\n",
"\n",
"println(\"Found $(length(diagrams)) Diagrams for 5-Photon Compton\")\n",
"println(\"Diagram 1: $(first(diagrams))\")"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Diagram 1: Initial Particles: [p_i_1, e_i_1, e_o_1, p_o_1]\n",
" Virtuality Level 1 Vertices: [p_i_1 + e_i_1 -> k_o_2, e_o_1 + p_o_1 -> k_o_1]\n",
" Tie: k_o_2 -- k_o_1\n",
"\n",
"Diagram 2: Initial Particles: [p_i_1, e_i_1, e_o_1, p_o_1]\n",
" Virtuality Level 1 Vertices: [p_i_1 + p_o_1 -> k_o_1, e_i_1 + e_o_1 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n"
]
}
],
"source": [
"# Bhabha Scattering\n",
"fd = FeynmanDiagram(parse_process(\"ep->ep\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Diagram 1: Initial Particles: [e_i_1, e_i_2, e_o_1, e_o_2]\n",
" Virtuality Level 1 Vertices: [e_i_2 + e_o_2 -> k_o_2, e_i_1 + e_o_1 -> k_o_1]\n",
" Tie: k_o_2 -- k_o_1\n",
"\n",
"Diagram 2: Initial Particles: [e_i_1, e_i_2, e_o_1, e_o_2]\n",
" Virtuality Level 1 Vertices: [e_i_1 + e_o_2 -> k_o_1, e_i_2 + e_o_1 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n"
]
}
],
"source": [
"# Moller Scattering\n",
"fd = FeynmanDiagram(parse_process(\"ee->ee\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Diagram 1: Initial Particles: [p_i_1, e_i_1, k_o_1, k_o_2]\n",
" Virtuality Level 1 Vertices: [e_i_1 + k_o_2 -> e_i_2, p_i_1 + k_o_1 -> e_o_1]\n",
" Tie: e_i_2 -- e_o_1\n",
"\n",
"Diagram 2: Initial Particles: [p_i_1, e_i_1, k_o_1, k_o_2]\n",
" Virtuality Level 1 Vertices: [e_i_1 + k_o_1 -> e_i_2, p_i_1 + k_o_2 -> e_o_1]\n",
" Tie: e_i_2 -- e_o_1\n",
"\n"
]
}
],
"source": [
"# Pair annihilation\n",
"fd = FeynmanDiagram(parse_process(\"ep->kk\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Diagram 1: Initial Particles: [k_i_1, k_i_2, e_o_1, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + p_o_1 -> e_i_1, k_i_2 + e_o_1 -> e_o_2]\n",
" Tie: e_i_1 -- e_o_2\n",
"\n",
"Diagram 2: Initial Particles: [k_i_1, k_i_2, e_o_1, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_1 -> e_o_2, k_i_2 + p_o_1 -> e_i_1]\n",
" Tie: e_o_2 -- e_i_1\n",
"\n"
]
}
],
"source": [
"# Pair production\n",
"fd = FeynmanDiagram(parse_process(\"kk->pe\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 8 diagrams:\n",
"Diagram 1: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_1 -> e_o_3, e_i_1 + e_o_2 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [p_o_1 + k_o_1 -> e_i_2]\n",
" Tie: e_o_3 -- e_i_2\n",
"\n",
"Diagram 2: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + p_o_1 -> e_i_2, e_i_1 + e_o_2 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_o_1 + e_i_2 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n",
"Diagram 3: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_2 -> e_o_3, e_i_1 + e_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [p_o_1 + e_o_3 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n",
"Diagram 4: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_i_1 -> e_i_2, e_o_2 + p_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_o_1 + e_i_2 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n",
"Diagram 5: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_1 -> e_o_3, e_o_2 + p_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_i_1 + k_o_1 -> e_i_2]\n",
" Tie: e_o_3 -- e_i_2\n",
"\n",
"Diagram 6: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_o_2 -> e_o_3, e_o_1 + p_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_i_1 + e_o_3 -> k_o_2]\n",
" Tie: k_o_1 -- k_o_2\n",
"\n",
"Diagram 7: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + p_o_1 -> e_i_2, e_i_1 + e_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_o_2 + k_o_1 -> e_o_3]\n",
" Tie: e_i_2 -- e_o_3\n",
"\n",
"Diagram 8: Initial Particles: [k_i_1, e_i_1, e_o_1, e_o_2, p_o_1]\n",
" Virtuality Level 1 Vertices: [k_i_1 + e_i_1 -> e_i_2, e_o_1 + p_o_1 -> k_o_1]\n",
" Virtuality Level 2 Vertices: [e_o_2 + k_o_1 -> e_o_3]\n",
" Tie: e_i_2 -- e_o_3\n",
"\n"
]
}
],
"source": [
"# Trident\n",
"fd = FeynmanDiagram(parse_process(\"ke->epe\", QEDModel()))\n",
"\n",
"diagrams = gen_diagrams(fd)\n",
"\n",
"println(\"Found $(length(diagrams)) diagrams:\")\n",
"c = 1\n",
"for d in diagrams\n",
" println(\"Diagram $c: $d\")\n",
" c += 1\n",
"end"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.4",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,111 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "595a07c5-0ecc-4f3e-8cbe-63fc64b456da",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[36m\u001b[1m[ \u001b[22m\u001b[39m\u001b[36m\u001b[1mInfo: \u001b[22m\u001b[39mPrecompiling MetagraphOptimization [3e869610-d48d-4942-ba70-c1b702a33ca4]\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using BenchmarkTools; using Profile; using PProf; using Revise; using MetagraphOptimization;\n",
"Threads.nthreads()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "163f84be-1e2e-480e-9944-1fa4e0eedf3b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 1 NUMA nodes\n",
"CUDA is non-functional\n"
]
},
{
"data": {
"text/plain": [
"QED Process: 'ke->kkkkke'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"machine = get_machine_info()\n",
"model = QEDModel()\n",
"process = parse_process(\"ke->kkkkke\", model)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6c2eef40-5df0-4396-8e62-5204c4de61f3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"profile.pb.gz\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Main binary filename not available.\n",
"Serving web UI on http://localhost:57599\n"
]
}
],
"source": [
"gen_graph(parse_process(\"ke->kke\", model))\n",
"Profile.clear()\n",
"@profile gen_graph(process)\n",
"pprof()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.4",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,129 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"12"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"using MetagraphOptimization\n",
"using BenchmarkTools\n",
"\n",
"Threads.nthreads()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Graph:\n",
" Nodes: Total: 131069, DataTask: 65539, ComputeTaskQED_Sum: 1, \n",
" ComputeTaskQED_V: 35280, ComputeTaskQED_S2: 5040, ComputeTaskQED_U: 9, \n",
" ComputeTaskQED_S1: 25200\n",
" Edges: 176419\n",
" Total Compute Effort: 549370.0\n",
" Total Data Transfer: 1.0645344e7\n",
" Total Compute Intensity: 0.05160659909158408\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"machine = get_machine_info()\n",
"model = QEDModel()\n",
"process = parse_process(\"ke->kkkkkke\", model)\n",
"\n",
"inputs = [gen_process_input(process) for _ in 1:1e3];\n",
"graph = gen_graph(process)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Graph:\n",
" Nodes: Total: 14783, DataTask: 7396, ComputeTaskQED_Sum: 1, \n",
" ComputeTaskQED_V: 1819, ComputeTaskQED_S2: 5040, ComputeTaskQED_U: 9, \n",
" ComputeTaskQED_S1: 518\n",
" Edges: 26672\n",
" Total Compute Effort: 77102.0\n",
" Total Data Transfer: 5.063616e6\n",
" Total Compute Intensity: 0.015226668056977465\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"optimizer = ReductionOptimizer()\n",
"\n",
"optimize_to_fixpoint!(optimizer, graph)\n",
"graph"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calculated 15537.0 results/s, 1295.0 results/s per thread for QED Process: 'ke->kkkkkke' (12 threads)\n"
]
}
],
"source": [
"compute_compton_reduced = get_compute_function(graph, process, machine)\n",
"outputs = [zero(ComplexF64) for _ in 1:1e6]\n",
"\n",
"bench_result = @benchmark begin\n",
" Threads.@threads :static for i in eachindex(inputs)\n",
" outputs[i] = compute_compton_reduced(inputs[i])\n",
" end\n",
"end\n",
"\n",
"rate = length(inputs) / (mean(bench_result.times) / 1.0e9)\n",
"rate_per_thread = rate / Threads.nthreads()\n",
"println(\"Calculated $(round(rate)) results/s, $(round(rate_per_thread)) results/s per thread for $(process) ($(Threads.nthreads()) threads)\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.4",
"language": "julia",
"name": "julia-1.9"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -30,17 +30,16 @@
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"@ProfileView.profview reduce_all!(graph)"
"@ProfileView.profview optimize_to_fixpoint!(ReductionOptimizer(), graph)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@ProfileView.profview comp_func = get_compute_function(graph, process)"
"@ProfileView.profview comp_func = get_compute_function(graph, process, get_machine_info())"
]
},
{
@ -53,7 +52,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Julia 1.9.3",
"display_name": "Julia 1.9.4",
"language": "julia",
"name": "julia-1.9"
},
@ -61,7 +60,7 @@
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.9.3"
"version": "1.9.4"
},
"orig_nbformat": 4
},

View File

@ -4,8 +4,8 @@ Run with 32 Threads
AB->AB:
Graph:
Nodes: Total: 34, ComputeTaskS2: 2, ComputeTaskU: 4,
ComputeTaskSum: 1, ComputeTaskV: 4, ComputeTaskP: 4,
Nodes: Total: 34, ComputeTaskABC_S2: 2, ComputeTaskABC_U: 4,
ComputeTaskABC_Sum: 1, ComputeTaskABC_V: 4, ComputeTaskABC_P: 4,
DataTask: 19
Edges: 37
Total Compute Effort: 185
@ -27,9 +27,9 @@ Waiting...
AB->ABBB:
Graph:
Nodes: Total: 280, ComputeTaskS2: 24, ComputeTaskU: 6,
ComputeTaskV: 64, ComputeTaskSum: 1, ComputeTaskP: 6,
ComputeTaskS1: 36, DataTask: 143
Nodes: Total: 280, ComputeTaskABC_S2: 24, ComputeTaskABC_U: 6,
ComputeTaskABC_V: 64, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 6,
ComputeTaskABC_S1: 36, DataTask: 143
Edges: 385
Total Compute Effort: 2007
Total Data Transfer: 1176
@ -50,9 +50,9 @@ Waiting...
AB->ABBBBB:
Graph:
Nodes: Total: 7854, ComputeTaskS2: 720, ComputeTaskU: 8,
ComputeTaskV: 1956, ComputeTaskSum: 1, ComputeTaskP: 8,
ComputeTaskS1: 1230, DataTask: 3931
Nodes: Total: 7854, ComputeTaskABC_S2: 720, ComputeTaskABC_U: 8,
ComputeTaskABC_V: 1956, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 8,
ComputeTaskABC_S1: 1230, DataTask: 3931
Edges: 11241
Total Compute Effort: 58789
Total Data Transfer: 34826
@ -73,9 +73,9 @@ Waiting...
AB->ABBBBBBB:
Graph:
Nodes: Total: 438436, ComputeTaskS2: 40320, ComputeTaskU: 10,
ComputeTaskV: 109600, ComputeTaskSum: 1, ComputeTaskP: 10,
ComputeTaskS1: 69272, DataTask: 219223
Nodes: Total: 438436, ComputeTaskABC_S2: 40320, ComputeTaskABC_U: 10,
ComputeTaskABC_V: 109600, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 10,
ComputeTaskABC_S1: 69272, DataTask: 219223
Edges: 628665
Total Compute Effort: 3288131
Total Data Transfer: 1949004
@ -96,9 +96,9 @@ Waiting...
AB->ABBBBBBBBB:
Graph:
Nodes: Total: 39456442, ComputeTaskS2: 3628800, ComputeTaskU: 12,
ComputeTaskV: 9864100, ComputeTaskSum: 1, ComputeTaskP: 12,
ComputeTaskS1: 6235290, DataTask: 19728227
Nodes: Total: 39456442, ComputeTaskABC_S2: 3628800, ComputeTaskABC_U: 12,
ComputeTaskABC_V: 9864100, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 12,
ComputeTaskABC_S1: 6235290, DataTask: 19728227
Edges: 56578129
Total Compute Effort: 295923153
Total Data Transfer: 175407750
@ -119,9 +119,9 @@ Waiting...
ABAB->ABAB:
Graph:
Nodes: Total: 3218, ComputeTaskS2: 288, ComputeTaskU: 8,
ComputeTaskV: 796, ComputeTaskSum: 1, ComputeTaskP: 8,
ComputeTaskS1: 504, DataTask: 1613
Nodes: Total: 3218, ComputeTaskABC_S2: 288, ComputeTaskABC_U: 8,
ComputeTaskABC_V: 796, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 8,
ComputeTaskABC_S1: 504, DataTask: 1613
Edges: 4581
Total Compute Effort: 24009
Total Data Transfer: 14144
@ -142,9 +142,9 @@ Waiting...
ABAB->ABC:
Graph:
Nodes: Total: 817, ComputeTaskS2: 72, ComputeTaskU: 7,
ComputeTaskV: 198, ComputeTaskSum: 1, ComputeTaskP: 7,
ComputeTaskS1: 120, DataTask: 412
Nodes: Total: 817, ComputeTaskABC_S2: 72, ComputeTaskABC_U: 7,
ComputeTaskABC_V: 198, ComputeTaskABC_Sum: 1, ComputeTaskABC_P: 7,
ComputeTaskABC_S1: 120, DataTask: 412
Edges: 1151
Total Compute Effort: 6028
Total Data Transfer: 3538

View File

@ -5,6 +5,9 @@ A module containing tools to work on DAGs.
"""
module MetagraphOptimization
using QEDbase
# graph types
export DAG
export Node
export Edge
@ -18,6 +21,7 @@ export FusedComputeTask
export PossibleOperations
export GraphProperties
# graph functions
export make_node
export make_edge
export insert_node
@ -27,10 +31,15 @@ export is_exit_node
export parents
export children
export compute
export data
export compute_effort
export task
export get_properties
export get_exit_node
export operation_stack_length
export is_valid, is_scheduled
# graph operation related
export Operation
export AppliedOperation
export NodeFusion
@ -42,21 +51,45 @@ export can_pop
export reset_graph!
export get_operations
export ComputeTaskP
export ComputeTaskS1
export ComputeTaskS2
export ComputeTaskV
export ComputeTaskU
export ComputeTaskSum
# ABC model
export ParticleValue
export ParticleA, ParticleB, ParticleC
export ABCParticle, ABCProcessDescription, ABCProcessInput, ABCModel
export ComputeTaskABC_P
export ComputeTaskABC_S1
export ComputeTaskABC_S2
export ComputeTaskABC_V
export ComputeTaskABC_U
export ComputeTaskABC_Sum
# QED model
export FeynmanDiagram, FeynmanVertex, FeynmanTie, FeynmanParticle
export PhotonStateful, FermionStateful, AntiFermionStateful
export QEDParticle, QEDProcessDescription, QEDProcessInput, QEDModel
export ComputeTaskQED_P
export ComputeTaskQED_S1
export ComputeTaskQED_S2
export ComputeTaskQED_V
export ComputeTaskQED_U
export ComputeTaskQED_Sum
export gen_graph
# code generation related
export execute
export parse_dag, parse_process
export gen_process_input
export get_compute_function
export ParticleValue
export ParticleA, ParticleB, ParticleC
export ABCProcessDescription, ABCProcessInput, ABCModel
# estimator
export cost_type, graph_cost, operation_effect
export GlobalMetricEstimator, CDCost
# optimization
export AbstractOptimizer, GreedyOptimizer, ReductionOptimizer, RandomWalkOptimizer
export optimize_step!, optimize!
export fixpoint_reached, optimize_to_fixpoint!
# machine info
export Machine
export get_machine_info
@ -64,6 +97,9 @@ export ==, in, show, isempty, delete!, length
export bytes_to_human_readable
# TODO: this is probably not good
import QEDprocesses.compute
import Base.length
import Base.show
import Base.==
@ -105,6 +141,7 @@ include("node/properties.jl")
include("node/validate.jl")
include("operation/utility.jl")
include("operation/iterate.jl")
include("operation/apply.jl")
include("operation/clean.jl")
include("operation/find.jl")
@ -121,6 +158,14 @@ include("task/compute.jl")
include("task/print.jl")
include("task/properties.jl")
include("estimator/interface.jl")
include("estimator/global_metric.jl")
include("optimization/interface.jl")
include("optimization/greedy.jl")
include("optimization/random_walk.jl")
include("optimization/reduce.jl")
include("models/interface.jl")
include("models/print.jl")
@ -132,6 +177,15 @@ include("models/abc/properties.jl")
include("models/abc/parse.jl")
include("models/abc/print.jl")
include("models/qed/types.jl")
include("models/qed/particle.jl")
include("models/qed/diagrams.jl")
include("models/qed/compute.jl")
include("models/qed/create.jl")
include("models/qed/properties.jl")
include("models/qed/parse.jl")
include("models/qed/print.jl")
include("devices/measure.jl")
include("devices/detect.jl")
include("devices/impl.jl")

View File

@ -61,13 +61,11 @@ function gen_input_assignment_code(
assignInputs = Vector{Expr}()
for (name, symbols) in inputSymbols
type = type_from_name(name)
index = parse(Int, name[2:end])
(type, index) = type_index_from_name(model(processDescription), name)
p = nothing
if (index > in_particles(processDescription)[type])
index -= in_particles(processDescription)[type]
if (index > get(in_particles(processDescription), type, 0))
index -= get(in_particles(processDescription), type, 0)
@assert index <= out_particles(processDescription)[type] "Too few particles of type $type in input particles for this process"
p = "filter(x -> typeof(x) <: $type, out_particles($(processInputSymbol)))[$(index)]"
@ -76,10 +74,9 @@ function gen_input_assignment_code(
end
for symbol in symbols
# TODO: how to get the "default" cpu device?
device = entry_device(machine)
evalExpr = eval(gen_access_expr(device, symbol))
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue($p, 1.0)"))
push!(assignInputs, Meta.parse("$(evalExpr)::ParticleValue{$type} = ParticleValue($p, one(ComplexF64))"))
end
end
@ -102,6 +99,7 @@ function get_compute_function(graph::DAG, process::AbstractProcessDescription, m
expr = Meta.parse(
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
)
func = eval(expr)
return func

View File

@ -0,0 +1,77 @@
"""
CDCost
Representation of a [`DAG`](@ref)'s cost as estimated by the [`GlobalMetricEstimator`](@ref).
# Fields:
`.data`: The total data transfer.\\
`.computeEffort`: The total compute effort.\\
`.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`.
!!! note
Note that the `computeIntensity` doesn't necessarily make sense in the context of only operation costs.
For example, for node fusions this will always be 0, since the computeEffort is zero.
It will still work as intended when adding/subtracting to/from a `graph_cost` estimate.
"""
const CDCost = NamedTuple{(:data, :computeEffort, :computeIntensity), Tuple{Float64, Float64, Float64}}
function +(cost1::CDCost, cost2::CDCost)::CDCost
d = cost1.data + cost2.data
ce = computeEffort = cost1.computeEffort + cost2.computeEffort
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end
function -(cost1::CDCost, cost2::CDCost)::CDCost
d = cost1.data - cost2.data
ce = computeEffort = cost1.computeEffort - cost2.computeEffort
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end
function isless(cost1::CDCost, cost2::CDCost)::Bool
return cost1.data + cost1.computeEffort < cost2.data + cost2.computeEffort
end
function zero(type::Type{CDCost})
return (data = 0.0, computeEffort = 00.0, computeIntensity = 0.0)::CDCost
end
function typemax(type::Type{CDCost})
return (data = Inf, computeEffort = Inf, computeIntensity = 0.0)::CDCost
end
struct GlobalMetricEstimator <: AbstractEstimator end
function cost_type(estimator::GlobalMetricEstimator)::Type{CDCost}
return CDCost
end
function graph_cost(estimator::GlobalMetricEstimator, graph::DAG)
properties = get_properties(graph)
return (
data = properties.data,
computeEffort = properties.computeEffort,
computeIntensity = properties.computeIntensity,
)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeFusion)
return (data = -data(operation.input[2].task), computeEffort = 0.0, computeIntensity = 0.0)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeReduction)
s = length(operation.input) - 1
return (
data = s * -data(task(operation.input[1])),
computeEffort = s * -compute_effort(task(operation.input[1])),
computeIntensity = typeof(operation.input) <: DataTaskNode ? 0.0 : Inf,
)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeSplit)
s::Float64 = length(parents(operation.input)) - 1
d::Float64 = s * data(task(operation.input))
ce::Float64 = s * compute_effort(task(operation.input))
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end

View File

@ -0,0 +1,44 @@
"""
AbstractEstimator
Abstract base type for an estimator. An estimator estimates the cost of a graph or the difference an operation applied to a graph will make to its cost.
Interface functions are
- [`graph_cost`](@ref)
- [`operation_effect`](@ref)
"""
abstract type AbstractEstimator end
"""
cost_type(estimator::AbstractEstimator)
Interface function returning a specific estimator's cost type, i.e., the type returned by its implementation of [`graph_cost`](@ref) and [`operation_effect`](@ref).
"""
function cost_type end
"""
graph_cost(estimator::AbstractEstimator, graph::DAG)
Get the total estimated cost of the graph. The cost's data type can be chosen by the implementation, but must have a usable lessthan comparison operator (<), basic math operators (+, -) and an implementation of `zero()` and `typemax()`.
"""
function graph_cost end
"""
operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation)
Get the estimated effect on the cost of the graph, such that `graph_cost(estimator, graph) + operation_effect(estimator, graph, operation) ~= graph_cost(estimator, graph_with_operation_applied)`. There is no hard requirement for this, but the better the estimate, the better an optimization algorithm will be.
!!! note
There is a default implementation of this function, applying the operation, calling [`graph_cost`](@ref), then popping the operation again.
It can be much faster to overload this function for a specific estimator and directly compute the effects from the operation if possible.
"""
function operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation)
# This is currently not stably working, see issue #16
cost = graph_cost(estimator, graph)
push_operation!(graph, operation)
cost_after = graph_cost(estimator, graph)
pop_operation!(graph)
return cost_after - cost
end

View File

@ -17,21 +17,5 @@ function in(edge::Edge, graph::DAG)
return false
end
return n1 in n2.children
end
"""
==(n1::Node, n2::Node, g::DAG)
Check equality of two nodes in a graph.
"""
function ==(n1::Node, n2::Node, g::DAG)
if typeof(n1) != typeof(n2)
return false
end
if !(n1 in g) || !(n2 in g)
return false
end
return n1.task == n2.task && children(n1) == children(n2)
return n1 in children(n2)
end

View File

@ -46,7 +46,7 @@ Insert the edge between node1 (child) and node2 (parent) into the graph.
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`remove_edge!`](@ref)
"""
function insert_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
@assert (node2 node1.parents) && (node1 node2.children) "Edge to insert already exists"
#@assert (node2 ∉ parents(node1)) && (node1 ∉ children(node2)) "Edge to insert already exists"
# 1: mute
# edge points from child to parent
@ -85,7 +85,7 @@ Remove the node from the graph.
See also: [`insert_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
"""
function remove_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
@assert node in graph.nodes "Trying to remove a node that's not in the graph"
#@assert node in graph.nodes "Trying to remove a node that's not in the graph"
# 1: mute
delete!(graph.nodes, node)
@ -123,19 +123,29 @@ function remove_edge!(graph::DAG, node1::Node, node2::Node; track = true, invali
pre_length1 = length(node1.parents)
pre_length2 = length(node2.children)
#TODO: filter is very slow
filter!(x -> x != node2, node1.parents)
filter!(x -> x != node1, node2.children)
for i in eachindex(node1.parents)
if (node1.parents[i] == node2)
splice!(node1.parents, i)
break
end
end
@assert begin
for i in eachindex(node2.children)
if (node2.children[i] == node1)
splice!(node2.children, i)
break
end
end
#=@assert begin
removed = pre_length1 - length(node1.parents)
removed <= 1
end "removed more than one node from node1's parents"
end "removed more than one node from node1's parents"=#
@assert begin
removed = pre_length2 - length(node2.children)
#=@assert begin
removed = pre_length2 - length(children(node2))
removed <= 1
end "removed more than one node from node2's children"
end "removed more than one node from node2's children"=#
# 2: keep track
if (track)
@ -163,7 +173,7 @@ function replace_children!(task::FusedComputeTask, before, after)
replacedIn1 = length(findall(x -> x == before, task.t1_inputs))
replacedIn2 = length(findall(x -> x == before, task.t2_inputs))
@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
#@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
replace!(task.t1_inputs, before => after)
replace!(task.t2_inputs, before => after)
@ -185,33 +195,33 @@ end
function update_child!(graph::DAG, n::Node, child_before::Symbol, child_after::Symbol; track = true)
# only need to update fused compute tasks
if !(typeof(n.task) <: FusedComputeTask)
if !(typeof(task(n)) <: FusedComputeTask)
return nothing
end
taskBefore = copy(n.task)
taskBefore = copy(task(n))
if !((child_before in n.task.t1_inputs) || (child_before in n.task.t2_inputs))
#=if !((child_before in task(n).t1_inputs) || (child_before in task(n).t2_inputs))
println("------------------ Nothing to replace!! ------------------")
child_ids = Vector{String}()
for child in n.children
for child in children(n)
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
end=#
replace_children!(n.task, child_before, child_after)
replace_children!(task(n), child_before, child_after)
if !((child_after in n.task.t1_inputs) || (child_after in n.task.t2_inputs))
#=if !((child_after in task(n).t1_inputs) || (child_after in task(n).t2_inputs))
println("------------------ Did not replace anything!! ------------------")
child_ids = Vector{String}()
for child in n.children
for child in children(n)
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
end=#
# keep track
if (track)
@ -241,9 +251,14 @@ function invalidate_caches!(graph::DAG, operation::NodeFusion)
delete!(graph.possibleOperations, operation)
# delete the operation from all caches of nodes involved in the operation
# TODO: filter is very slow
filter!(!=(operation), operation.input[1].nodeFusions)
filter!(!=(operation), operation.input[3].nodeFusions)
for n in [1, 3]
for i in eachindex(operation.input[n].nodeFusions)
if operation == operation.input[n].nodeFusions[i]
splice!(operation.input[n].nodeFusions, i)
break
end
end
end
operation.input[2].nodeFusion = missing

View File

@ -30,10 +30,10 @@ function show(io::IO, graph::DAG)
nodeDict = Dict{Type, Int64}()
noEdges = 0
for node in graph.nodes
if haskey(nodeDict, typeof(node.task))
nodeDict[typeof(node.task)] = nodeDict[typeof(node.task)] + 1
if haskey(nodeDict, typeof(task(node)))
nodeDict[typeof(task(node))] = nodeDict[typeof(task(node))] + 1
else
nodeDict[typeof(node.task)] = 1
nodeDict[typeof(task(node))] = 1
end
noEdges += length(parents(node))
end
@ -41,7 +41,7 @@ function show(io::IO, graph::DAG)
if length(graph.nodes) <= 20
show_nodes(io, graph)
else
print("Total: ", length(graph.nodes), ", ")
print(io, "Total: ", length(graph.nodes), ", ")
first = true
i = 0
for (type, number) in zip(keys(nodeDict), values(nodeDict))
@ -49,12 +49,12 @@ function show(io::IO, graph::DAG)
if first
first = false
else
print(", ")
print(io, ", ")
end
if (i % 3 == 0)
print("\n ")
print(io, "\n ")
end
print(type, ": ", number)
print(io, type, ": ", number)
end
end
println(io)

View File

@ -43,3 +43,12 @@ function get_entry_nodes(graph::DAG)
end
return result
end
"""
operation_stack_length(graph::DAG)
Return the number of operations applied to the graph.
"""
function operation_stack_length(graph::DAG)
return length(graph.appliedOperations) + length(graph.operationsToApply)
end

View File

@ -24,7 +24,7 @@ To get the set of possible operations, use [`get_operations`](@ref).
The members of the object should not be manually accessed, instead always use the provided interface functions.
"""
mutable struct DAG
nodes::Set{Node}
nodes::Set{Union{DataTaskNode, ComputeTaskNode}}
# The operations currently applied to the set of nodes
appliedOperations::Stack{AppliedOperation}
@ -36,7 +36,7 @@ mutable struct DAG
possibleOperations::PossibleOperations
# The set of nodes whose possible operations need to be reevaluated
dirtyNodes::Set{Node}
dirtyNodes::Set{Union{DataTaskNode, ComputeTaskNode}}
# "snapshot" system: keep track of added/removed nodes/edges since last snapshot
# these are muted in insert_node! etc.

View File

@ -1,42 +1,46 @@
using AccurateArithmetic
"""
compute(::ComputeTaskP, data::ParticleValue)
compute(::ComputeTaskABC_P, data::ABCParticleValue)
Return the particle and value as is.
0 FLOP.
"""
function compute(::ComputeTaskP, data::ParticleValue)
function compute(::ComputeTaskABC_P, data::ABCParticleValue{P})::ABCParticleValue{P} where {P <: ABCParticle}
return data
end
"""
compute(::ComputeTaskU, data::ParticleValue)
compute(::ComputeTaskABC_U, data::ABCParticleValue)
Compute an outer edge. Return the particle value with the same particle and the value multiplied by an outer_edge factor.
Compute an outer edge. Return the particle value with the same particle and the value multiplied by an ABC_outer_edge factor.
1 FLOP.
"""
function compute(::ComputeTaskU, data::ParticleValue)
return ParticleValue(data.p, data.v * outer_edge(data.p))
function compute(::ComputeTaskABC_U, data::ABCParticleValue{P})::ABCParticleValue{P} where {P <: ABCParticle}
return ABCParticleValue{P}(data.p, data.v * ABC_outer_edge(data.p))
end
"""
compute(::ComputeTaskV, data1::ParticleValue, data2::ParticleValue)
compute(::ComputeTaskABC_V, data1::ABCParticleValue, data2::ABCParticleValue)
Compute a vertex. Preserve momentum and particle types (AB->C etc.) to create resulting particle, multiply values together and times a vertex factor.
6 FLOP.
"""
function compute(::ComputeTaskV, data1::ParticleValue, data2::ParticleValue)
p3 = preserve_momentum(data1.p, data2.p)
dataOut = ParticleValue(p3, data1.v * vertex() * data2.v)
function compute(
::ComputeTaskABC_V,
data1::ABCParticleValue{P1},
data2::ABCParticleValue{P2},
)::ABCParticleValue where {P1 <: ABCParticle, P2 <: ABCParticle}
p3 = ABC_conserve_momentum(data1.p, data2.p)
dataOut = ABCParticleValue{typeof(p3)}(p3, data1.v * ABC_vertex() * data2.v)
return dataOut
end
"""
compute(::ComputeTaskS2, data1::ParticleValue, data2::ParticleValue)
compute(::ComputeTaskABC_S2, data1::ABCParticleValue, data2::ABCParticleValue)
Compute a final inner edge (2 input particles, no output particle).
@ -44,111 +48,116 @@ For valid inputs, both input particles should have the same momenta at this poin
12 FLOP.
"""
function compute(::ComputeTaskS2, data1::ParticleValue, data2::ParticleValue)
function compute(
::ComputeTaskABC_S2,
data1::ParticleValue{P},
data2::ParticleValue{P},
)::Float64 where {P <: ABCParticle}
#=
@assert isapprox(abs(data1.p.momentum.E), abs(data2.p.momentum.E), rtol = 0.001, atol = sqrt(eps())) "E: $(data1.p.momentum.E) vs. $(data2.p.momentum.E)"
@assert isapprox(data1.p.momentum.px, -data2.p.momentum.px, rtol = 0.001, atol = sqrt(eps())) "px: $(data1.p.momentum.px) vs. $(data2.p.momentum.px)"
@assert isapprox(data1.p.momentum.py, -data2.p.momentum.py, rtol = 0.001, atol = sqrt(eps())) "py: $(data1.p.momentum.py) vs. $(data2.p.momentum.py)"
@assert isapprox(data1.p.momentum.pz, -data2.p.momentum.pz, rtol = 0.001, atol = sqrt(eps())) "pz: $(data1.p.momentum.pz) vs. $(data2.p.momentum.pz)"
=#
return data1.v * inner_edge(data1.p) * data2.v
inner = ABC_inner_edge(data1.p)
return data1.v * inner * data2.v
end
"""
compute(::ComputeTaskS1, data::ParticleValue)
compute(::ComputeTaskABC_S1, data::ABCParticleValue)
Compute inner edge (1 input particle, 1 output particle).
11 FLOP.
"""
function compute(::ComputeTaskS1, data::ParticleValue)
return ParticleValue(data.p, data.v * inner_edge(data.p))
function compute(::ComputeTaskABC_S1, data::ABCParticleValue{P})::ABCParticleValue{P} where {P <: ABCParticle}
return ABCParticleValue{P}(data.p, data.v * ABC_inner_edge(data.p))
end
"""
compute(::ComputeTaskSum, data::Vector{Float64})
compute(::ComputeTaskABC_Sum, data::Vector{Float64})
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
Linearly many FLOP with growing data.
"""
function compute(::ComputeTaskSum, data::Vector{Float64})
function compute(::ComputeTaskABC_Sum, data::Vector{Float64})::Float64
return sum_kbn(data)
end
"""
get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate and return code evaluating [`ComputeTaskP`](@ref) on `inSyms`, providing the output on `outSym`.
Generate and return code evaluating [`ComputeTaskABC_P`](@ref) on `inSyms`, providing the output on `outSym`.
"""
function get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskP(), $(in[1]))")
return Meta.parse("$out = compute(ComputeTaskABC_P(), $(in[1]))")
end
"""
get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskU`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskABC_U`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
"""
function get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskU(), $(in[1]))")
return Meta.parse("$out = compute(ComputeTaskABC_U(), $(in[1]))")
end
"""
get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskV`](@ref) on `inSyms`, providing the output on `outSym`.
`inSym[1]` and `inSym[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskABC_V`](@ref) on `inSyms`, providing the output on `outSym`.
`inSym[1]` and `inSym[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
"""
function get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskV(), $(in[1]), $(in[2]))")
return Meta.parse("$out = compute(ComputeTaskABC_V(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskS2`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms[1]` and `inSyms[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type `Float64`.
Generate code evaluating [`ComputeTaskABC_S2`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms[1]` and `inSyms[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type `Float64`.
"""
function get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskS2(), $(in[1]), $(in[2]))")
return Meta.parse("$out = compute(ComputeTaskABC_S2(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskS1`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
Generate code evaluating [`ComputeTaskABC_S1`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
"""
function get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskS1(), $(in[1]))")
return Meta.parse("$out = compute(ComputeTaskABC_S1(), $(in[1]))")
end
"""
get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskSum`](@ref) on `inSyms`, providing the output on `outSym`.
Generate code evaluating [`ComputeTaskABC_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
"""
function get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector, outExpr)
function get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
in = eval.(inExprs)
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskSum(), [$(unroll_symbol_vector(in))])")
return Meta.parse("$out = compute(ComputeTaskABC_Sum(), [$(unroll_symbol_vector(in))])")
end

View File

@ -3,7 +3,7 @@ using Random
using Roots
using ForwardDiff
ComputeTaskSum() = ComputeTaskSum(0)
ComputeTaskABC_Sum() = ComputeTaskABC_Sum(0)
"""
gen_process_input(processDescription::ABCProcessDescription)
@ -62,137 +62,3 @@ function gen_process_input(processDescription::ABCProcessDescription)
return return processInput
end
####################
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
# use qedphasespaces directly once released
#
# quick and dirty implementation of the RAMBO algorithm
#
# reference:
# * https://cds.cern.ch/record/164736/files/198601282.pdf
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
####################
function generate_initial_moms(ss, masses)
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
rho1 = sqrt(E1^2 - masses[1]^2)
rho2 = sqrt(E2^2 - masses[2]^2)
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
end
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
function _transform_uni_to_mom(u1, u2, u3, u4)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return SFourMomentum(q0, qx, qy, qz)
end
function _transform_uni_to_mom!(uni_mom, dest)
u1, u2, u3, u4 = Tuple(uni_mom)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return dest = SFourMomentum(q0, qx, qy, qz)
end
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
function generate_massless_moms(rng, n::Int)
a = Vector{SFourMomentum}(undef, n)
rand!(rng, a)
return map(_transform_uni_to_mom, a)
end
function generate_physical_massless_moms(rng, ss, n)
r_moms = generate_massless_moms(rng, n)
Q = sum(r_moms)
M = sqrt(Q * Q)
fac = -1 / M
Qx = getX(Q)
Qy = getY(Q)
Qz = getZ(Q)
bx = fac * Qx
by = fac * Qy
bz = fac * Qz
gamma = getT(Q) / M
a = 1 / (1 + gamma)
x = ss / M
i = 1
while i <= n
mom = r_moms[i]
mom0 = getT(mom)
mom1 = getX(mom)
mom2 = getY(mom)
mom3 = getZ(mom)
bq = bx * mom1 + by * mom2 + bz * mom3
p0 = x * (gamma * mom0 + bq)
px = x * (mom1 + bx * mom0 + a * bq * bx)
py = x * (mom2 + by * mom0 + a * bq * by)
pz = x * (mom3 + bz * mom0 + a * bq * bz)
r_moms[i] = SFourMomentum(p0, px, py, pz)
i += 1
end
return r_moms
end
function _to_be_solved(xi, masses, p0s, ss)
sum = 0.0
for (i, E) in enumerate(p0s)
sum += sqrt(masses[i]^2 + xi^2 * E^2)
end
return sum - ss
end
function _build_massive_momenta(xi, masses, massless_moms)
vec = SFourMomentum[]
i = 1
while i <= length(massless_moms)
massless_mom = massless_moms[i]
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
kx = xi * getX(massless_mom)
ky = xi * getY(massless_mom)
kz = xi * getZ(massless_mom)
push!(vec, SFourMomentum(k0, kx, ky, kz))
i += 1
end
return vec
end
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
n = length(masses)
massless_moms = generate_physical_massless_moms(rng, ss, n)
energies = getT.(massless_moms)
f = x -> _to_be_solved(x, masses, energies, ss)
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
return _build_massive_momenta(xi, masses, massless_moms)
end

View File

@ -63,7 +63,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
end
sizehint!(graph.nodes, estimate_no_nodes)
sum_node = insert_node!(graph, make_node(ComputeTaskSum(0)), track = false, invalidate_cache = false)
sum_node = insert_node!(graph, make_node(ComputeTaskABC_Sum(0)), track = false, invalidate_cache = false)
global_data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, sum_node, global_data_out, track = false, invalidate_cache = false)
@ -92,12 +92,12 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
track = false,
invalidate_cache = false,
) # read particle data node
compute_P = insert_node!(graph, make_node(ComputeTaskP()), track = false, invalidate_cache = false) # compute P node
compute_P = insert_node!(graph, make_node(ComputeTaskABC_P()), track = false, invalidate_cache = false) # compute P node
data_Pu =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data from P to u (one ParticleValue object)
compute_u = insert_node!(graph, make_node(ComputeTaskU()), track = false, invalidate_cache = false) # compute U node
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data from P to u (one ABCParticleValue object)
compute_u = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false, invalidate_cache = false) # compute U node
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ParticleValue object)
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ABCParticleValue object)
insert_edge!(graph, data_in, compute_P, track = false, invalidate_cache = false)
insert_edge!(graph, compute_P, data_Pu, track = false, invalidate_cache = false)
@ -112,13 +112,13 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
in1 = capt.captures[1]
in2 = capt.captures[2]
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
compute_v = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false, invalidate_cache = false)
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
if (occursin(regex_c, in1))
# put an S node after this input
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
compute_S = insert_node!(graph, make_node(ComputeTaskABC_S1()), track = false, invalidate_cache = false)
data_S_v = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
@ -137,7 +137,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
if (occursin(regex_c, in2))
# i think the current generator only puts the combined particles in the first space, so this case might never be entered
# put an S node after this input
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
compute_S = insert_node!(graph, make_node(ComputeTaskABC_S1()), track = false, invalidate_cache = false)
data_S_v = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
@ -164,7 +164,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
in3 = capt.captures[3]
# in2 + in3 with a v
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
compute_v = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false, invalidate_cache = false)
data_v =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
@ -173,7 +173,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
insert_edge!(graph, compute_v, data_v, track = false, invalidate_cache = false)
# combine with the v of the combined other input
compute_S2 = insert_node!(graph, make_node(ComputeTaskS2()), track = false, invalidate_cache = false)
compute_S2 = insert_node!(graph, make_node(ComputeTaskABC_S2()), track = false, invalidate_cache = false)
data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false) # output of a S2 task is only a float
insert_edge!(graph, data_v, compute_S2, track = false, invalidate_cache = false)
@ -181,7 +181,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
insert_edge!(graph, compute_S2, data_out, track = false, invalidate_cache = false)
insert_edge!(graph, data_out, sum_node, track = false, invalidate_cache = false)
add_child!(sum_node.task)
add_child!(task(sum_node))
elseif occursin(regex_plus, node)
if (verbose)
println("\rReading Nodes Complete ")

View File

@ -1,4 +1,4 @@
using QEDbase
import QEDbase.mass
"""
ABCModel <: AbstractPhysicsModel
@ -66,6 +66,8 @@ struct ABCProcessInput <: AbstractProcessInput
outParticles::Vector{ABCParticle}
end
ABCParticleValue{ParticleType <: ABCParticle} = ParticleValue{ParticleType, ComplexF64}
"""
PARTICLE_MASSES
@ -87,9 +89,9 @@ For 2 given (non-equal) particle types, return the third of ABC.
"""
function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
@assert t1 != t2
if t1 != Type{ParticleA} && t2 != Type{ParticleA}
if t1 != ParticleA && t2 != ParticleA
return ParticleA
elseif t1 != Type{ParticleB} && t2 != Type{ParticleB}
elseif t1 != ParticleB && t2 != ParticleB
return ParticleB
else
return ParticleC
@ -117,66 +119,63 @@ function square(p::ABCParticle)
end
"""
inner_edge(p::ABCParticle)
ABC_inner_edge(p::ABCParticle)
Return the factor of the inner edge with the given (virtual) particle.
Takes 10 effective FLOP. (3 here + 7 in square(p))
"""
function inner_edge(p::ABCParticle)
function ABC_inner_edge(p::ABCParticle)
return 1.0 / (square(p) - mass(typeof(p)) * mass(typeof(p)))
end
"""
outer_edge(p::ABCParticle)
ABC_outer_edge(p::ABCParticle)
Return the factor of the outer edge with the given (real) particle.
Takes 0 effective FLOP.
"""
function outer_edge(p::ABCParticle)
function ABC_outer_edge(p::ABCParticle)
return 1.0
end
"""
vertex()
ABC_vertex()
Return the factor of a vertex.
Takes 0 effective FLOP since it's constant.
"""
function vertex()
function ABC_vertex()
i = 1.0
lambda = 1.0 / 137.0
return i * lambda
end
"""
preserve_momentum(p1::ABCParticle, p2::ABCParticle)
ABC_conserve_momentum(p1::ABCParticle, p2::ABCParticle)
Calculate and return a new particle from two given interacting ones at a vertex.
Takes 4 effective FLOP.
"""
function preserve_momentum(p1::ABCParticle, p2::ABCParticle)
function ABC_conserve_momentum(p1::ABCParticle, p2::ABCParticle)
t3 = interaction_result(typeof(p1), typeof(p2))
p3 = t3(p1.momentum + p2.momentum)
return p3
end
"""
type_from_name(name::String)
model(::ABCProcessDescription) = ABCModel()
model(::ABCProcessInput) = ABCModel()
For a name of a particle, return the particle's [`Type`].
"""
function type_from_name(name::String)
function type_index_from_name(::ABCModel, name::String)
if startswith(name, "A")
return ParticleA
return (ParticleA, parse(Int, name[2:end]))
elseif startswith(name, "B")
return ParticleB
return (ParticleB, parse(Int, name[2:end]))
elseif startswith(name, "C")
return ParticleC
return (ParticleC, parse(Int, name[2:end]))
else
throw("Invalid name for a particle in the ABC model")
end

View File

@ -1,166 +1,134 @@
"""
compute_effort(t::ComputeTaskS1)
compute_effort(t::ComputeTaskABC_S1)
Return the compute effort of an S1 task.
"""
compute_effort(t::ComputeTaskS1) = 11
compute_effort(t::ComputeTaskABC_S1)::Float64 = 11.0
"""
compute_effort(t::ComputeTaskS2)
compute_effort(t::ComputeTaskABC_S2)
Return the compute effort of an S2 task.
"""
compute_effort(t::ComputeTaskS2) = 12
compute_effort(t::ComputeTaskABC_S2)::Float64 = 12.0
"""
compute_effort(t::ComputeTaskU)
compute_effort(t::ComputeTaskABC_U)
Return the compute effort of a U task.
"""
compute_effort(t::ComputeTaskU) = 1
compute_effort(t::ComputeTaskABC_U)::Float64 = 1.0
"""
compute_effort(t::ComputeTaskV)
compute_effort(t::ComputeTaskABC_V)
Return the compute effort of a V task.
"""
compute_effort(t::ComputeTaskV) = 6
compute_effort(t::ComputeTaskABC_V)::Float64 = 6.0
"""
compute_effort(t::ComputeTaskP)
compute_effort(t::ComputeTaskABC_P)
Return the compute effort of a P task.
"""
compute_effort(t::ComputeTaskP) = 0
compute_effort(t::ComputeTaskABC_P)::Float64 = 0.0
"""
compute_effort(t::ComputeTaskSum)
compute_effort(t::ComputeTaskABC_Sum)
Return the compute effort of a Sum task.
Note: This is a constant compute effort, even though sum scales with the number of its inputs. Since there is only ever a single sum node in a graph generated from the ABC-Model,
this doesn't matter.
"""
compute_effort(t::ComputeTaskSum) = 1
compute_effort(t::ComputeTaskABC_Sum)::Float64 = 1.0
"""
show(io::IO, t::DataTask)
Print the data task to io.
"""
function show(io::IO, t::DataTask)
return print(io, "Data", t.data)
end
"""
show(io::IO, t::ComputeTaskS1)
show(io::IO, t::ComputeTaskABC_S1)
Print the S1 task to io.
"""
show(io::IO, t::ComputeTaskS1) = print(io, "ComputeS1")
show(io::IO, t::ComputeTaskABC_S1) = print(io, "ComputeS1")
"""
show(io::IO, t::ComputeTaskS2)
show(io::IO, t::ComputeTaskABC_S2)
Print the S2 task to io.
"""
show(io::IO, t::ComputeTaskS2) = print(io, "ComputeS2")
show(io::IO, t::ComputeTaskABC_S2) = print(io, "ComputeS2")
"""
show(io::IO, t::ComputeTaskP)
show(io::IO, t::ComputeTaskABC_P)
Print the P task to io.
"""
show(io::IO, t::ComputeTaskP) = print(io, "ComputeP")
show(io::IO, t::ComputeTaskABC_P) = print(io, "ComputeP")
"""
show(io::IO, t::ComputeTaskU)
show(io::IO, t::ComputeTaskABC_U)
Print the U task to io.
"""
show(io::IO, t::ComputeTaskU) = print(io, "ComputeU")
show(io::IO, t::ComputeTaskABC_U) = print(io, "ComputeU")
"""
show(io::IO, t::ComputeTaskV)
show(io::IO, t::ComputeTaskABC_V)
Print the V task to io.
"""
show(io::IO, t::ComputeTaskV) = print(io, "ComputeV")
show(io::IO, t::ComputeTaskABC_V) = print(io, "ComputeV")
"""
show(io::IO, t::ComputeTaskSum)
show(io::IO, t::ComputeTaskABC_Sum)
Print the sum task to io.
"""
show(io::IO, t::ComputeTaskSum) = print(io, "ComputeSum")
show(io::IO, t::ComputeTaskABC_Sum) = print(io, "ComputeSum")
"""
copy(t::DataTask)
children(::ComputeTaskABC_S1)
Copy the data task and return it.
Return the number of children of a ComputeTaskABC_S1 (always 1).
"""
copy(t::DataTask) = DataTask(t.data)
children(::ComputeTaskABC_S1) = 1
"""
children(::DataTask)
children(::ComputeTaskABC_S2)
Return the number of children of a data task (always 1).
Return the number of children of a ComputeTaskABC_S2 (always 2).
"""
children(::DataTask) = 1
children(::ComputeTaskABC_S2) = 2
"""
children(::ComputeTaskS1)
children(::ComputeTaskABC_P)
Return the number of children of a ComputeTaskS1 (always 1).
Return the number of children of a ComputeTaskABC_P (always 1).
"""
children(::ComputeTaskS1) = 1
children(::ComputeTaskABC_P) = 1
"""
children(::ComputeTaskS2)
children(::ComputeTaskABC_U)
Return the number of children of a ComputeTaskS2 (always 2).
Return the number of children of a ComputeTaskABC_U (always 1).
"""
children(::ComputeTaskS2) = 2
children(::ComputeTaskABC_U) = 1
"""
children(::ComputeTaskP)
children(::ComputeTaskABC_V)
Return the number of children of a ComputeTaskP (always 1).
Return the number of children of a ComputeTaskABC_V (always 2).
"""
children(::ComputeTaskP) = 1
"""
children(::ComputeTaskU)
Return the number of children of a ComputeTaskU (always 1).
"""
children(::ComputeTaskU) = 1
"""
children(::ComputeTaskV)
Return the number of children of a ComputeTaskV (always 2).
"""
children(::ComputeTaskV) = 2
children(::ComputeTaskABC_V) = 2
"""
children(::ComputeTaskSum)
children(::ComputeTaskABC_Sum)
Return the number of children of a ComputeTaskSum.
Return the number of children of a ComputeTaskABC_Sum.
"""
children(t::ComputeTaskSum) = t.children_number
children(t::ComputeTaskABC_Sum) = t.children_number
"""
children(t::FusedComputeTask)
Return the number of children of a FusedComputeTask.
"""
function children(t::FusedComputeTask)
return length(union(Set(t.t1_inputs), Set(t.t2_inputs)))
end
function add_child!(t::ComputeTaskSum)
function add_child!(t::ComputeTaskABC_Sum)
t.children_number += 1
return nothing
end

View File

@ -1,53 +1,44 @@
"""
DataTask <: AbstractDataTask
Task representing a specific data transfer in the ABC Model.
"""
struct DataTask <: AbstractDataTask
data::UInt64
end
"""
ComputeTaskS1 <: AbstractComputeTask
ComputeTaskABC_S1 <: AbstractComputeTask
S task with a single child.
"""
struct ComputeTaskS1 <: AbstractComputeTask end
struct ComputeTaskABC_S1 <: AbstractComputeTask end
"""
ComputeTaskS2 <: AbstractComputeTask
ComputeTaskABC_S2 <: AbstractComputeTask
S task with two children.
"""
struct ComputeTaskS2 <: AbstractComputeTask end
struct ComputeTaskABC_S2 <: AbstractComputeTask end
"""
ComputeTaskP <: AbstractComputeTask
ComputeTaskABC_P <: AbstractComputeTask
P task with no children.
"""
struct ComputeTaskP <: AbstractComputeTask end
struct ComputeTaskABC_P <: AbstractComputeTask end
"""
ComputeTaskV <: AbstractComputeTask
ComputeTaskABC_V <: AbstractComputeTask
v task with two children.
"""
struct ComputeTaskV <: AbstractComputeTask end
struct ComputeTaskABC_V <: AbstractComputeTask end
"""
ComputeTaskU <: AbstractComputeTask
ComputeTaskABC_U <: AbstractComputeTask
u task with a single child.
"""
struct ComputeTaskU <: AbstractComputeTask end
struct ComputeTaskABC_U <: AbstractComputeTask end
"""
ComputeTaskSum <: AbstractComputeTask
ComputeTaskABC_Sum <: AbstractComputeTask
Task that sums all its inputs, n children.
"""
mutable struct ComputeTaskSum <: AbstractComputeTask
mutable struct ComputeTaskABC_Sum <: AbstractComputeTask
children_number::Int
end
@ -56,4 +47,5 @@ end
Constant vector of all tasks of the ABC-Model.
"""
ABC_TASKS = [DataTask, ComputeTaskS1, ComputeTaskS2, ComputeTaskP, ComputeTaskV, ComputeTaskU, ComputeTaskSum]
ABC_TASKS =
[ComputeTaskABC_S1, ComputeTaskABC_S2, ComputeTaskABC_P, ComputeTaskABC_V, ComputeTaskABC_U, ComputeTaskABC_Sum]

View File

@ -1,3 +1,5 @@
import QEDbase.mass
import QEDbase.AbstractParticle
"""
AbstractPhysicsModel
@ -6,23 +8,16 @@ Base type for a model, e.g. ABC-Model or QED. This is used to dispatch many func
"""
abstract type AbstractPhysicsModel end
"""
AbstractParticle
Base type for particles belonging to a certain [`AbstractPhysicsModel`](@ref).
"""
abstract type AbstractParticle end
"""
ParticleValue{ParticleType <: AbstractParticle}
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated.
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated. `AbstractParticle` is the type from the QEDbase package.
`sizeof(ParticleValue())` = 48 Byte
"""
struct ParticleValue{ParticleType <: AbstractParticle}
struct ParticleValue{ParticleType <: AbstractParticle, ValueType}
p::ParticleType
v::Float64
v::ValueType
end
"""
@ -43,13 +38,6 @@ See also: [`gen_process_input`](@ref)
"""
abstract type AbstractProcessInput end
"""
mass(t::Type{T}) where {T <: AbstractParticle}
Interface function that must be implemented for every subtype of [`AbstractParticle`](@ref), returning the particles mass at rest.
"""
function mass end
"""
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: AbstractParticle, T2 <: AbstractParticle}
@ -107,3 +95,18 @@ Interface function that must be implemented for every specific [`AbstractProcess
Returns a randomly generated and valid corresponding `ProcessInput`.
"""
function gen_process_input end
"""
model(::AbstractProcessDescription)
model(::AbstarctProcessInput)
Return the model of this process description or input.
"""
function model end
"""
type_from_name(model::AbstractModel, name::String)
For a name of a particle in the given [`AbstractModel`](@ref), return the particle's [`Type`] and index as a tuple. The input string can be expetced to be of the form \"<name><index>\".
"""
function type_index_from_name end

198
src/models/qed/compute.jl Normal file
View File

@ -0,0 +1,198 @@
"""
compute(::ComputeTaskQED_P, data::QEDParticleValue)
Return the particle as is and initialize the Value.
"""
function compute(::ComputeTaskQED_P, data::QEDParticleValue{P})::QEDParticleValue{P} where {P <: QEDParticle}
# TODO do we actually need this for anything?
return QEDParticleValue{P}(data.p, one(DiracMatrix))
end
"""
compute(::ComputeTaskQED_U, data::QEDParticleValue)
Compute an outer edge. Return the particle value with the same particle and the value multiplied by an outer_edge factor.
"""
function compute(::ComputeTaskQED_U, data::PV) where {P <: QEDParticle, PV <: QEDParticleValue{P}}
state = base_state(particle(data.p), direction(data.p), momentum(data.p), spin_or_pol(data.p))
return ParticleValue{P, typeof(state)}(
data.p,
state, # will return a SLorentzVector{ComplexF64}, BiSpinor or AdjointBiSpinor
)
end
"""
compute(::ComputeTaskQED_V, data1::QEDParticleValue, data2::QEDParticleValue)
Compute a vertex. Preserve momentum and particle types (e + gamma->p etc.) to create resulting particle, multiply values together and times a vertex factor.
"""
function compute(
::ComputeTaskQED_V,
data1::PV1,
data2::PV2,
) where {P1 <: QEDParticle, P2 <: QEDParticle, PV1 <: QEDParticleValue{P1}, PV2 <: QEDParticleValue{P2}}
p3 = QED_conserve_momentum(data1.p, data2.p)
P3 = interaction_result(P1, P2)
state = QED_vertex()
if (typeof(data1.v) <: AdjointBiSpinor)
state = data1.v * state
else
state = state * data1.v
end
if (typeof(data2.v) <: AdjointBiSpinor)
state = data2.v * state
else
state = state * data2.v
end
dataOut = ParticleValue{P3, typeof(state)}(P3(p3), state)
return dataOut
end
"""
compute(::ComputeTaskQED_S2, data1::QEDParticleValue, data2::QEDParticleValue)
Compute a final inner edge (2 input particles, no output particle).
For valid inputs, both input particles should have the same momenta at this point.
12 FLOP.
"""
function compute(
::ComputeTaskQED_S2,
data1::ParticleValue{P1},
data2::ParticleValue{P2},
)::ComplexF64 where {
P1 <: Union{AntiFermionStateful, FermionStateful},
P2 <: Union{AntiFermionStateful, FermionStateful},
}
@assert isapprox(data1.p.momentum, data2.p.momentum, rtol = sqrt(eps()), atol = sqrt(eps())) "$(data1.p.momentum) vs. $(data2.p.momentum)"
inner = QED_inner_edge(propagation_result(P1)(data1.p))
# inner edge is just a "scalar", data1 and data2 are bispinor/adjointbispinnor, need to keep correct order
if typeof(data1.v) <: BiSpinor
return data2.v * inner * data1.v
else
return data1.v * inner * data2.v
end
end
# TODO: S2 when the particles are photons?
function compute(
::ComputeTaskQED_S2,
data1::ParticleValue{P1},
data2::ParticleValue{P2},
)::ComplexF64 where {P1 <: PhotonStateful, P2 <: PhotonStateful}
# TODO: assert that data1 and data2 are opposites
inner = QED_inner_edge(data1.p)
# inner edge is just a scalar, data1 and data2 are photon states that are just Complex numbers here
return data1.v * inner * data2.v
end
"""
compute(::ComputeTaskQED_S1, data::QEDParticleValue)
Compute inner edge (1 input particle, 1 output particle).
"""
function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P})::QEDParticleValue where {P <: QEDParticle}
newP = propagation_result(P)
new_p = newP(data.p)
# inner edge is just a scalar, can multiply from either side
if typeof(data.v) <: BiSpinor
return ParticleValue(new_p, QED_inner_edge(new_p) * data.v)
else
return ParticleValue(new_p, data.v * QED_inner_edge(new_p))
end
end
"""
compute(::ComputeTaskQED_Sum, data::Vector{ComplexF64})
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
Linearly many FLOP with growing data.
"""
function compute(::ComputeTaskQED_Sum, data::Vector{ComplexF64})::ComplexF64
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
return sum(data)
end
"""
get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate and return code evaluating [`ComputeTaskQED_P`](@ref) on `inSyms`, providing the output on `outSym`.
"""
function get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_P(), $(in[1]))")
end
"""
get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskQED_U`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
"""
function get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_U(), $(in[1]))")
end
"""
get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskQED_V`](@ref) on `inSyms`, providing the output on `outSym`.
`inSym[1]` and `inSym[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
"""
function get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_V(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskQED_S2`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms[1]` and `inSyms[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type `Float64`.
"""
function get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1]), eval(inExprs[2])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_S2(), $(in[1]), $(in[2]))")
end
"""
get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskQED_S1`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
"""
function get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector, outExpr)
in = [eval(inExprs[1])]
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_S1(), $(in[1]))")
end
"""
get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
Generate code evaluating [`ComputeTaskQED_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
"""
function get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
in = eval.(inExprs)
out = eval(outExpr)
return Meta.parse("$out = compute(ComputeTaskQED_Sum(), [$(unroll_symbol_vector(in))])")
end

172
src/models/qed/create.jl Normal file
View File

@ -0,0 +1,172 @@
ComputeTaskQED_Sum() = ComputeTaskQED_Sum(0)
"""
gen_process_input(processDescription::QEDProcessDescription)
Return a ProcessInput of randomly generated [`QEDParticle`](@ref)s from a [`QEDProcessDescription`](@ref). The process description can be created manually or parsed from a string using [`parse_process`](@ref).
Note: This uses RAMBO to create a valid process with conservation of momentum and energy.
"""
function gen_process_input(processDescription::QEDProcessDescription)
massSum = 0
inputMasses = Vector{Float64}()
for (particle, n) in processDescription.inParticles
for _ in 1:n
massSum += mass(particle)
push!(inputMasses, mass(particle))
end
end
outputMasses = Vector{Float64}()
for (particle, n) in processDescription.outParticles
for _ in 1:n
massSum += mass(particle)
push!(outputMasses, mass(particle))
end
end
# add some extra random mass to allow for some momentum
massSum += rand(rng[threadid()]) * (length(inputMasses) + length(outputMasses))
inputParticles = Vector{QEDParticle}()
initialMomenta = generate_initial_moms(massSum, inputMasses)
index = 1
for (particle, n) in processDescription.inParticles
for _ in 1:n
mom = initialMomenta[index]
push!(inputParticles, particle(mom))
index += 1
end
end
outputParticles = Vector{QEDParticle}()
final_momenta = generate_physical_massive_moms(rng[threadid()], massSum, outputMasses)
index = 1
for (particle, n) in processDescription.outParticles
for _ in 1:n
push!(outputParticles, particle(final_momenta[index]))
index += 1
end
end
processInput = QEDProcessInput(processDescription, inputParticles, outputParticles)
return return processInput
end
"""
gen_graph(process_description::QEDProcessDescription)
For a given [`QEDProcessDescription`](@ref), return the [`DAG`](@ref) that computes it.
"""
function gen_graph(process_description::QEDProcessDescription)
initial_diagram = FeynmanDiagram(process_description)
diagrams = gen_diagrams(initial_diagram)
graph = DAG()
COMPLEX_SIZE = sizeof(ComplexF64)
PARTICLE_VALUE_SIZE = 96.0
# TODO: Not all diagram outputs should always be summed at the end, if they differ by fermion exchange they need to be diffed
# Should not matter for n-Photon Compton processes though
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(0)), track = false, invalidate_cache = false)
global_data_out = insert_node!(graph, make_node(DataTask(COMPLEX_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, sum_node, global_data_out, track = false, invalidate_cache = false)
# remember the data out nodes for connection
dataOutNodes = Dict()
for particle in initial_diagram.particles
# generate data in and U tasks
data_in = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE), String(particle)),
track = false,
invalidate_cache = false,
) # read particle data node
compute_u = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false, invalidate_cache = false) # compute U node
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ABCParticleValue object)
insert_edge!(graph, data_in, compute_u, track = false, invalidate_cache = false)
insert_edge!(graph, compute_u, data_out, track = false, invalidate_cache = false)
# remember the data_out node for future edges
dataOutNodes[String(particle)] = data_out
end
#dataOutBackup = copy(dataOutNodes)
for diagram in diagrams
# the intermediate (virtual) particles change across
#dataOutNodes = copy(dataOutBackup)
tie = diagram.tie[]
# handle the vertices
for vertices in diagram.vertices
for vertex in vertices
data_in1 = dataOutNodes[String(vertex.in1)]
data_in2 = dataOutNodes[String(vertex.in2)]
compute_V = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false, invalidate_cache = false) # compute vertex
insert_edge!(graph, data_in1, compute_V, track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_V, track = false, invalidate_cache = false)
data_V_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
track = false,
invalidate_cache = false,
)
insert_edge!(graph, compute_V, data_V_out, track = false, invalidate_cache = false)
if (vertex.out == tie.in1 || vertex.out == tie.in2)
# out particle is part of the tie -> there will be an S2 task with it later, don't make S1 task
dataOutNodes[String(vertex.out)] = data_V_out
continue
end
# otherwise, add S1 task
compute_S1 =
insert_node!(graph, make_node(ComputeTaskQED_S1()), track = false, invalidate_cache = false) # compute propagator
insert_edge!(graph, data_V_out, compute_S1, track = false, invalidate_cache = false)
data_S1_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
track = false,
invalidate_cache = false,
)
insert_edge!(graph, compute_S1, data_S1_out, track = false, invalidate_cache = false)
# overrides potentially different nodes from previous diagrams, which is intentional
dataOutNodes[String(vertex.out)] = data_S1_out
end
end
# handle the tie
data_in1 = dataOutNodes[String(tie.in1)]
data_in2 = dataOutNodes[String(tie.in2)]
compute_S2 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false, invalidate_cache = false)
data_S2 = insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, data_in1, compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S2, data_S2, track = false, invalidate_cache = false)
insert_edge!(graph, data_S2, sum_node, track = false, invalidate_cache = false)
add_child!(task(sum_node))
end
return graph
end

484
src/models/qed/diagrams.jl Normal file
View File

@ -0,0 +1,484 @@
import Base.copy
import Base.hash
import Base.==
import Base.show
"""
FeynmanParticle
Representation of a particle for use in [`FeynmanDiagram`](@ref)s. Consist of the [`QEDParticle`](@ref) type and an id.
"""
struct FeynmanParticle
particle::Type{<:QEDParticle}
id::Int
end
"""
FeynmanVertex
Representation of a vertex in a [`FeynmanDiagram`](@ref). Stores two input [`FeynmanParticle`](@ref)s and one output.
"""
struct FeynmanVertex
in1::FeynmanParticle
in2::FeynmanParticle
out::FeynmanParticle
end
"""
FeynmanTie
Representation of a "tie" in a [`FeynmanDiagram`](@ref). A tie ties two virtual particles in a diagram together and thus represent an inner line of the diagram. Not all inner lines are [`FeynmanTie`](@ref)s, in fact, a connected diagram only ever has exactly one tie.
"""
struct FeynmanTie
in1::FeynmanParticle
in2::FeynmanParticle
end
"""
FeynmanDiagram
Representation of a feynman diagram. It consists of its initial input/output particles, and a vector of sets of [`FeynmanVertex`](@ref)s. The vertices are to be applied level by level.
A [`FeynmanVertex`](@ref) will always be at the lowest level possible, i.e. the lowest level at which all input particles for it exist.
The [`FeynmanTie`](@ref) represents the final inner edge of the diagram.
"""
struct FeynmanDiagram
vertices::Vector{Set{FeynmanVertex}}
tie::Ref{Union{FeynmanTie, Missing}}
particles::Vector{FeynmanParticle}
type_ids::Dict{Type, Int64} # lut for number of used ids for a particle type
end
"""
FeynmanDiagram(pd::QEDProcessDescription)
Create an initial [`FeynmanDiagram`](@ref) with only its initial particles set and no vertices or ties.
Use [`gen_diagrams`](@ref) to generate all possible diagrams from this one.
"""
function FeynmanDiagram(pd::QEDProcessDescription)
parts = Vector{FeynmanParticle}()
for (type, n) in pd.inParticles
for i in 1:n
push!(parts, FeynmanParticle(type, i))
end
end
for (type, n) in pd.outParticles
for i in 1:n
push!(parts, FeynmanParticle(type, i))
end
end
ids = Dict{Type, Int64}()
for t in types(QEDModel())
if (isincoming(t))
ids[t] = get(pd.inParticles, t, 0)
else
ids[t] = get(pd.outParticles, t, 0)
end
end
return FeynmanDiagram([], missing, parts, ids)
end
function particle_after_tie(p::FeynmanParticle, t::FeynmanTie)
if p == t.in1 || p == t.in2
return FeynmanParticle(FermionStateful{Incoming}, -1) # placeholder particle and id for tied particles
end
return p
end
function vertex_after_tie(v::FeynmanVertex, t::FeynmanTie)
return FeynmanVertex(particle_after_tie(v.in1, t), particle_after_tie(v.in2, t), particle_after_tie(v.out, t))
end
function vertex_after_tie(v::FeynmanVertex, t::Missing)
return v
end
function vertex_set_after_tie(vs::Set{FeynmanVertex}, t::FeynmanTie)
return Set{FeynmanVertex}(vertex_after_tie(v, t) for v in vs)
end
function vertex_set_after_tie(vs::Set{FeynmanVertex}, t::Missing)
return vs
end
function vertex_set_after_tie(vs::Set{FeynmanVertex}, t1::Union{FeynmanTie, Missing}, t2::Union{FeynmanTie, Missing})
return Set{FeynmanVertex}(vertex_after_tie(vertex_after_tie(v, t1), t2) for v in vs)
end
"""
String(p::FeynmanParticle)
Return a string representation of the [`FeynmanParticle`](@ref) in a format that is readable by [`type_index_from_name`](@ref).
"""
function String(p::FeynmanParticle)
return "$(String(p.particle))$(String(direction(p.particle)))$(p.id)"
end
function hash(v::FeynmanVertex)
return hash(v.in1) * hash(v.in2)
end
function hash(t::FeynmanTie)
return hash(t.in1) * hash(t.in2)
end
function hash(d::FeynmanDiagram)
return hash((d.vertices, d.particles))
end
function ==(v1::FeynmanVertex, v2::FeynmanVertex)
return (v1.in1 == v2.in1 && v1.in2 == v2.in1) || (v1.in2 == v2.in1 && v1.in1 == v2.in2)
end
function ==(t1::FeynmanTie, t2::FeynmanTie)
return (t1.in1 == t2.in1 && t1.in2 == t2.in1) || (t1.in2 == t2.in1 && t1.in1 == t2.in2)
end
function ==(d1::FeynmanDiagram, d2::FeynmanDiagram)
if (!ismissing(d1.tie[]) && ismissing(d2.tie[])) || (ismissing(d1.tie[]) && !ismissing(d2.tie[]))
return false
end
if d1.particles != d2.particles
return false
end
if length(d1.vertices) != length(d2.vertices)
return false
end
# TODO can i prove that this works?
for (v1, v2) in zip(d1.vertices, d2.vertices)
if vertex_set_after_tie(v1, d1.tie[], d2.tie[]) != vertex_set_after_tie(v2, d1.tie[], d2.tie[])
return false
end
end
return true
#=return isequal.(
vertex_set_after_tie(d1.vertices, d1.tie, d2.tie),
vertex_set_after_tie(d2.vertices, d1.tie, d2.tie),
)=#
end
copy(fd::FeynmanDiagram) =
FeynmanDiagram(deepcopy(fd.vertices), copy(fd.tie[]), deepcopy(fd.particles), copy(fd.type_ids))
"""
id_for_type(d::FeynmanDiagram, t::Type{<:QEDParticle})
Return the highest id of any particle of the given type in the diagram + 1.
"""
function id_for_type(d::FeynmanDiagram, t::Type{<:QEDParticle})
return d.type_ids[t] + 1
end
"""
can_apply_vertex(particles::Vector{FeynmanParticle}, vertex::FeynmanVertex)
Return true if the given [`FeynmanVertex`](@ref) can be applied to the given particles, i.e. both input particles of the vertex are in the vector and the output particle is not.
"""
function can_apply_vertex(particles::Vector{FeynmanParticle}, vertex::FeynmanVertex)
return vertex.in1 in particles && vertex.in2 in particles && !(vertex.out in particles)
end
"""
apply_vertex!(particles::Vector{FeynmanParticle}, vertex::FeynmanVertex)
Apply a [`FeynmanVertex`](@ref) to the given vector of [`FeynmanParticle`](@ref)s.
"""
function apply_vertex!(particles::Vector{FeynmanParticle}, vertex::FeynmanVertex)
#@assert can_apply_vertex(particles, vertex)
length_before = length(particles)
filter!(x -> x != vertex.in1 && x != vertex.in2, particles)
push!(particles, vertex.out)
#@assert length(particles) == length_before - 1
return nothing
end
"""
can_apply_tie(particles::Vector{FeynmanParticle}, tie::FeynmanTie)
Return true if the given [`FeynmanTie`](@ref) can be applied to the given particles, i.e. both input particles of the tie are in the vector.
"""
function can_apply_tie(particles::Vector{FeynmanParticle}, tie::FeynmanTie)
return tie.in1 in particles && tie.in2 in particles
end
"""
apply_tie!(particles::Vector{FeynmanParticle}, tie::FeynmanTie)
Apply a [`FeynmanTie`](@ref) to the given vector of [`FeynmanParticle`](@ref)s.
"""
function apply_tie!(particles::Vector{FeynmanParticle}, tie::FeynmanTie)
@assert length(particles) == 2
@assert can_apply_tie(particles, tie)
@assert can_tie(tie.in1.particle, tie.in2.particle)
empty!(particles)
@assert length(particles) == 0
return nothing
end
function apply_tie!(::Vector{FeynmanParticle}, ::Missing)
return nothing
end
"""
get_particles(fd::FeynmanDiagram, level::Int)
Return a vector of the particles after applying the vertices and tie of the diagram up to the given level. If no level is given, apply all. The tie comes last and is its own "level".
"""
function get_particles(fd::FeynmanDiagram, level::Int = -1)
if level == -1
level = length(fd.vertices) + 1
end
working_particles = copy(fd.particles)
for l in 1:length(fd.vertices)
if l > level
break
end
for v in fd.vertices[l]
apply_vertex!(working_particles, v)
end
end
if (level > length(fd.vertices))
apply_tie!(working_particles, fd.tie[])
end
return working_particles
end
"""
add_vertex!(fd::FeynmanDiagram, vertex::FeynmanVertex)
Add the given vertex to the diagram, at the earliest level possible.
"""
function add_vertex!(fd::FeynmanDiagram, vertex::FeynmanVertex)
for i in eachindex(fd.vertices)
if (can_apply_vertex(get_particles(fd, i - 1), vertex))
push!(fd.vertices[i], vertex)
fd.type_ids[vertex.out.particle] += 1
return nothing
end
end
if !can_apply_vertex(get_particles(fd), vertex)
#@assert false "Can't add vertex $vertex to diagram"
end
push!(fd.vertices, Set{FeynmanVertex}())
push!(fd.vertices[end], vertex)
fd.type_ids[vertex.out.particle] += 1
return nothing
end
"""
add_vertex(fd::FeynmanDiagram, vertex::FeynmanVertex)
Add the given vertex to the diagram, at the earliest level possible. Return the new diagram without muting the given one.
"""
function add_vertex(fd::FeynmanDiagram, vertex::FeynmanVertex)
newfd = copy(fd)
add_vertex!(newfd, vertex)
return newfd
end
"""
add_tie!(fd::FeynmanDiagram, tie::FeynmanTie)
Add the given tie to the diagram, always at the last level.
"""
function add_tie!(fd::FeynmanDiagram, tie::FeynmanTie)
if !can_apply_tie(get_particles(fd), tie)
@assert false "Can't add tie $tie to diagram"
end
fd.tie[] = tie
#=
@assert length(fd.vertices) >= 2
#if the last vertex is involved in the tie and alone, lower it one level down
if (length(fd.vertices[end]) != 1)
return nothing
end
vert = fd.vertices[end][1]
if (vert != vertex_after_tie(vert, tie))
return nothing
end
pop!(fd.vertices)
push!(fd.vertices[end], vert)
=#
return nothing
end
"""
add_tie(fd::FeynmanDiagram, tie::FeynmanTie)
Add the given tie to the diagram, at the earliest level possible. Return the new diagram without muting the given one.
"""
function add_tie(fd::FeynmanDiagram, tie::FeynmanTie)
newfd = copy(fd)
add_tie!(newfd, tie)
return newfd
end
"""
isvalid(fd::FeynmanDiagram)
Return whether the given diagram is valid. A diagram is valid iff the following are true:
- After applying all vertices and the tie, there are no more particles left
- The diagram is connected
"""
function isvalid(fd::FeynmanDiagram)
if ismissing(fd.tie[])
# diagram is connected iff there is one tie
return false
end
if get_particles(fd) != []
return false
end
return true
end
"""
possible_vertices(fd::FeynmanDiagram)
Return a vector of all possible vertices that can be applied to the diagram at its current state.
"""
function possible_vertices(fd::FeynmanDiagram)
possibilities = Vector{FeynmanVertex}()
fully_generated_particles = get_particles(fd)
min_level = max(0, length(fd.vertices) - 1)
for l in min_level:length(fd.vertices)
particles = get_particles(fd, l)
for i in 1:length(particles)
for j in (i + 1):length(particles)
p1 = particles[i]
p2 = particles[j]
if (caninteract(p1.particle, p2.particle))
interaction_res = propagation_result(interaction_result(p1.particle, p2.particle))
v = FeynmanVertex(p1, p2, FeynmanParticle(interaction_res, id_for_type(fd, interaction_res)))
#@assert !(v.out in particles) "$v is in $fd"
if !can_apply_vertex(fully_generated_particles, v)
continue
end
push!(possibilities, v)
end
end
end
if (!isempty(possibilities))
return possibilities
end
end
return possibilities
end
"""
can_tie(p1::Type, p2::Type)
For two given [`QEDParitcle`](@ref) types, return whether they can be tied together.
They can be tied iff one is the [`propagation_result`](@ref) of the other, or if both are photons, in which case their direction does not matter.
"""
function can_tie(p1::Type, p2::Type)
if p1 == propagation_result(p2)
return true
end
if (p1 <: PhotonStateful && p2 <: PhotonStateful)
return true
end
return false
end
"""
possible_tie(fd::FeynmanDiagram)
Return a possible tie or `missing` for the diagram at its current state.
"""
function possible_tie(fd::FeynmanDiagram)
particles = get_particles(fd)
if (length(particles) != 2)
return missing
end
if (particles[1] in fd.particles || particles[2] in fd.particles)
return missing
end
tie = FeynmanTie(particles[1], particles[2])
if (can_apply_tie(particles, tie))
return tie
end
return missing
end
function remove_duplicates(compare_set::Set{FeynmanDiagram})
result = Set()
while !isempty(compare_set)
x = pop!(compare_set)
# we know there will only be one duplicate if any, so search for that and delete it
for y in compare_set
if x == y
delete!(compare_set, y)
break
end
end
push!(result, x)
end
return result
end
"""
gen_diagrams(fd::FeynmanDiagram)
From a given feynman diagram in its initial state, e.g. when created through the [`FeynmanDiagram(pd::ProcessDescription)`](@ref) constructor, generate and return all possible [`FeynmanDiagram`](@ref)s that describe that process.
"""
function gen_diagrams(fd::FeynmanDiagram)
working = Set{FeynmanDiagram}()
results = Set{FeynmanDiagram}()
push!(working, fd)
# we know there will be particle_number - 2 vertices, followed by 1 tie
n_particles = length(fd.particles)
n_vertices = n_particles - 2
# doing this in iterations should reduce the intermediate number of diagrams by hash collisions
for _ in 1:n_vertices
next_iter_set = Set{FeynmanDiagram}()
while !isempty(working)
d = pop!(working)
possibilities = possible_vertices(d)
for v in possibilities
push!(next_iter_set, add_vertex(d, v))
end
end
working = next_iter_set
end
# add the tie
for d in working
tie = possible_tie(d)
if ismissing(tie)
continue
end
add_tie!(d, tie)
if isvalid(d)
push!(results, d)
end
end
return remove_duplicates(results)
end

44
src/models/qed/parse.jl Normal file
View File

@ -0,0 +1,44 @@
"""
parse_process(string::AbstractString, model::QEDModel)
Parse a string representation of a process, such as "ke->ke" into the corresponding [`QEDProcessDescription`](@ref).
"""
function parse_process(str::AbstractString, model::QEDModel)
inParticles = Dict{Type, Int}()
outParticles = Dict{Type, Int}()
if !(contains(str, "->"))
throw("Did not find -> while parsing process \"$str\"")
end
(inStr, outStr) = split(str, "->")
if (isempty(inStr) || isempty(outStr))
throw("Process (\"$str\") input or output part is empty!")
end
for t in types(model)
if (isincoming(t))
inCount = count(x -> x == String(t)[1], inStr)
if inCount != 0
inParticles[t] = inCount
end
end
if (isoutgoing(t))
outCount = count(x -> x == String(t)[1], outStr)
if outCount != 0
outParticles[t] = outCount
end
end
end
if length(inStr) != sum(values(inParticles))
throw("Encountered unknown characters in the input part of process \"$str\"")
elseif length(outStr) != sum(values(outParticles))
throw("Encountered unknown characters in the output part of process \"$str\"")
end
return QEDProcessDescription(inParticles, outParticles)
end

348
src/models/qed/particle.jl Normal file
View File

@ -0,0 +1,348 @@
using QEDprocesses
import QEDbase.mass
# TODO check
const e = sqrt(4π / 137)
"""
QEDModel <: AbstractPhysicsModel
Singleton definition for identification of the QED-Model.
"""
struct QEDModel <: AbstractPhysicsModel end
"""
QEDParticle
Base type for all particles in the [`QEDModel`](@ref).
Its template parameter specifies the particle's direction.
The concrete types contain singletons of the types that they are, like `Photon` and `Electron` from QEDbase, and their state descriptions.
"""
abstract type QEDParticle{Direction <: ParticleDirection} <: AbstractParticle end
"""
QEDProcessDescription <: AbstractProcessDescription
A description of a process in the QED-Model. Contains the input and output particles.
See also: [`in_particles`](@ref), [`out_particles`](@ref), [`parse_process`](@ref)
"""
struct QEDProcessDescription <: AbstractProcessDescription
inParticles::Dict{Type{<:QEDParticle{Incoming}}, Int}
outParticles::Dict{Type{<:QEDParticle{Outgoing}}, Int}
end
"""
QEDProcessInput <: AbstractProcessInput
Input for a QED Process. Contains the [`QEDProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
See also: [`gen_process_input`](@ref)
"""
struct QEDProcessInput <: AbstractProcessInput
process::QEDProcessDescription
inParticles::Vector{QEDParticle}
outParticles::Vector{QEDParticle}
end
QEDParticleValue{ParticleType <: QEDParticle} = Union{
ParticleValue{ParticleType, BiSpinor},
ParticleValue{ParticleType, AdjointBiSpinor},
ParticleValue{ParticleType, DiracMatrix},
ParticleValue{ParticleType, SLorentzVector{Float64}},
ParticleValue{ParticleType, ComplexF64},
}
"""
PhotonStateful <: QEDParticle
A photon of the [`QEDModel`](@ref) with its state.
"""
struct PhotonStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
momentum::SFourMomentum
# this will maybe change to the full polarization vector? or do i need both
polarization::AbstractDefinitePolarization
end
PhotonStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
PhotonStateful{Direction}(mom, PolX()) # TODO: make allpol possible
PhotonStateful{Dir1}(ph::PhotonStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
PhotonStateful{Dir1}(ph.momentum, ph.polarization)
"""
FermionStateful <: QEDParticle
A fermion of the [`QEDModel`](@ref) with its state.
"""
struct FermionStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
momentum::SFourMomentum
spin::AbstractDefiniteSpin
# TODO: mass for electron/muon/tauon representation?
end
FermionStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
FermionStateful{Direction}(mom, SpinUp()) # TODO: make allspin possible
FermionStateful{Dir1}(f::FermionStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
FermionStateful{Dir1}(f.momentum, f.spin)
"""
AntiFermionStateful <: QEDParticle
An anti-fermion of the [`QEDModel`](@ref) with its state.
"""
struct AntiFermionStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
momentum::SFourMomentum
spin::AbstractDefiniteSpin
# TODO: mass for electron/muon/tauon representation?
end
AntiFermionStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
AntiFermionStateful{Direction}(mom, SpinUp()) # TODO: make allspin possible
AntiFermionStateful{Dir1}(f::AntiFermionStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
AntiFermionStateful{Dir1}(f.momentum, f.spin)
"""
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: QEDParticle, T2 <: QEDParticle}
For two given particle types that can interact, return the third.
"""
function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: QEDParticle, T2 <: QEDParticle}
@assert false "Invalid interaction between particles of types $t1 and $t2"
end
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{FermionStateful{Outgoing}}) = PhotonStateful{Incoming}
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{AntiFermionStateful{Incoming}}) = PhotonStateful{Incoming}
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{<:PhotonStateful}) = FermionStateful{Outgoing}
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{FermionStateful{Incoming}}) = PhotonStateful{Incoming}
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{AntiFermionStateful{Outgoing}}) = PhotonStateful{Incoming}
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{<:PhotonStateful}) = FermionStateful{Incoming}
# antifermion mirror
interaction_result(::Type{AntiFermionStateful{Incoming}}, t2::Type{<:QEDParticle}) =
interaction_result(FermionStateful{Outgoing}, t2)
interaction_result(::Type{AntiFermionStateful{Outgoing}}, t2::Type{<:QEDParticle}) =
interaction_result(FermionStateful{Incoming}, t2)
# photon commutativity
interaction_result(t1::Type{<:PhotonStateful}, t2::Type{<:QEDParticle}) = interaction_result(t2, t1)
# but prevent stack overflow
function interaction_result(t1::Type{<:PhotonStateful}, t2::Type{<:PhotonStateful})
@assert false "Invalid interaction between particles of types $t1 and $t2"
end
"""
propagation_result(t1::Type{T}) where {T <: QEDParticle}
Return the type of the inverted direction. E.g.
"""
propagation_result(::Type{FermionStateful{Incoming}}) = FermionStateful{Outgoing}
propagation_result(::Type{FermionStateful{Outgoing}}) = FermionStateful{Incoming}
propagation_result(::Type{AntiFermionStateful{Incoming}}) = AntiFermionStateful{Outgoing}
propagation_result(::Type{AntiFermionStateful{Outgoing}}) = AntiFermionStateful{Incoming}
propagation_result(::Type{PhotonStateful{Incoming}}) = PhotonStateful{Outgoing}
propagation_result(::Type{PhotonStateful{Outgoing}}) = PhotonStateful{Incoming}
"""
types(::QEDModel)
Return a Vector of the possible types of particle in the [`QEDModel`](@ref).
"""
function types(::QEDModel)
return [
PhotonStateful{Incoming},
PhotonStateful{Outgoing},
FermionStateful{Incoming},
FermionStateful{Outgoing},
AntiFermionStateful{Incoming},
AntiFermionStateful{Outgoing},
]
end
# type piracy?
String(::Type{Incoming}) = "Incoming"
String(::Type{Outgoing}) = "Outgoing"
String(::Incoming) = "i"
String(::Outgoing) = "o"
function String(::Type{<:PhotonStateful})
return "k"
end
function String(::Type{<:FermionStateful})
return "e"
end
function String(::Type{<:AntiFermionStateful})
return "p"
end
@inline particle(::PhotonStateful) = Photon()
@inline particle(::FermionStateful) = Electron()
@inline particle(::AntiFermionStateful) = Positron()
@inline momentum(p::PhotonStateful)::SFourMomentum = p.momentum
@inline momentum(p::FermionStateful)::SFourMomentum = p.momentum
@inline momentum(p::AntiFermionStateful)::SFourMomentum = p.momentum
@inline spin_or_pol(p::PhotonStateful)::AbstractPolarization = p.polarization
@inline spin_or_pol(p::FermionStateful)::AbstractSpin = p.spin
@inline spin_or_pol(p::AntiFermionStateful)::AbstractSpin = p.spin
@inline direction(::PhotonStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
@inline direction(::FermionStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
@inline direction(::AntiFermionStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
@inline direction(::Type{PhotonStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
@inline direction(::Type{FermionStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
@inline direction(::Type{AntiFermionStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
@inline isincoming(::QEDParticle{Incoming}) = true
@inline isincoming(::QEDParticle{Outgoing}) = false
@inline isoutgoing(::QEDParticle{Incoming}) = false
@inline isoutgoing(::QEDParticle{Outgoing}) = true
@inline isincoming(::Type{<:QEDParticle{Incoming}}) = true
@inline isincoming(::Type{<:QEDParticle{Outgoing}}) = false
@inline isoutgoing(::Type{<:QEDParticle{Incoming}}) = false
@inline isoutgoing(::Type{<:QEDParticle{Outgoing}}) = true
@inline mass(::Type{<:FermionStateful}) = 1.0
@inline mass(::Type{<:AntiFermionStateful}) = 1.0
@inline mass(::Type{<:PhotonStateful}) = 0.0
@inline invert_momentum(p::FermionStateful{Dir}) where {Dir <: ParticleDirection} =
FermionStateful{Dir}(-p.momentum, p.spin)
@inline invert_momentum(p::AntiFermionStateful{Dir}) where {Dir <: ParticleDirection} =
AntiFermionStateful{Dir}(-p.momentum, p.spin)
@inline invert_momentum(k::PhotonStateful{Dir}) where {Dir <: ParticleDirection} =
PhotonStateful{Dir}(-k.momentum, k.polarization)
"""
caninteract(T1::Type{<:QEDParticle}, T2::Type{<:QEDParticle})
For two given [`QEDParticle`](@ref) types, return whether they can interact at a vertex. This is equivalent to `!issame(T1, T2)`.
See also: [`issame`](@ref) and [`interaction_result`](@ref)
"""
function caninteract(T1::Type{<:QEDParticle}, T2::Type{<:QEDParticle})
if (T1 == T2)
return false
end
if (T1 <: PhotonStateful && T2 <: PhotonStateful)
return false
end
for (P1, P2) in [(T1, T2), (T2, T1)]
if (P1 == FermionStateful{Incoming} && P2 == AntiFermionStateful{Outgoing})
return false
end
if (P1 == FermionStateful{Outgoing} && P2 == AntiFermionStateful{Incoming})
return false
end
end
return true
end
function type_index_from_name(::QEDModel, name::String)
if startswith(name, "ki")
return (PhotonStateful{Incoming}, parse(Int, name[3:end]))
elseif startswith(name, "ko")
return (PhotonStateful{Outgoing}, parse(Int, name[3:end]))
elseif startswith(name, "ei")
return (FermionStateful{Incoming}, parse(Int, name[3:end]))
elseif startswith(name, "eo")
return (FermionStateful{Outgoing}, parse(Int, name[3:end]))
elseif startswith(name, "pi")
return (AntiFermionStateful{Incoming}, parse(Int, name[3:end]))
elseif startswith(name, "po")
return (AntiFermionStateful{Outgoing}, parse(Int, name[3:end]))
else
throw("Invalid name for a particle in the QED model")
end
end
"""
issame(T1::Type{<:QEDParticle}, T2::Type{<:QEDParticle})
For two given [`QEDParticle`](@ref) types, return whether they are equivalent for the purpose of a Feynman Diagram. That means e.g. an `Incoming` `AntiFermion` is the same as an `Outgoing` `Fermion`. This is equivalent to `!caninteract(T1, T2)`.
See also: [`caninteract`](@ref) and [`interaction_result`](@ref)
"""
function issame(T1::Type{<:QEDParticle}, T2::Type{<:QEDParticle})
return !caninteract(T1, T2)
end
"""
QED_vertex()
Return the factor of a vertex in a QED feynman diagram.
"""
@inline function QED_vertex()::SLorentzVector{DiracMatrix}
# Peskin-Schroeder notation
return -1im * e * gamma()
end
@inline function QED_inner_edge(p::QEDParticle)
pos_mom = p.momentum
return propagator(particle(p), pos_mom)
end
"""
QED_conserve_momentum(p1::QEDParticle, p2::QEDParticle)
Calculate and return a new particle from two given interacting ones at a vertex.
"""
function QED_conserve_momentum(p1::QEDParticle, p2::QEDParticle)
#println("Conserving momentum of \n$(direction(p1)) $(p1)\n and \n$(direction(p2)) $(p2)")
T3 = interaction_result(typeof(p1), typeof(p2))
# TODO: probably also need to do something about the spin/pol
p1_mom = p1.momentum
if (typeof(direction(p1)) <: Outgoing)
p1_mom *= -1
end
p2_mom = p2.momentum
if (typeof(direction(p2)) <: Outgoing)
p2_mom *= -1
end
p3_mom = p1_mom + p2_mom
if (typeof(direction(T3)) <: Incoming)
return T3(-p3_mom)
end
return T3(p3_mom)
end
"""
model(::AbstractProcessDescription)
Return the model of this process description.
"""
model(::QEDProcessDescription) = QEDModel()
model(::QEDProcessInput) = QEDModel()
==(p1::QEDProcessDescription, p2::QEDProcessDescription) =
p1.inParticles == p2.inParticles && p1.outParticles == p2.outParticles
function in_particles(process::QEDProcessDescription)
return process.inParticles
end
function in_particles(input::QEDProcessInput)
return input.inParticles
end
function out_particles(process::QEDProcessDescription)
return process.outParticles
end
function out_particles(input::QEDProcessInput)
return input.outParticles
end

115
src/models/qed/print.jl Normal file
View File

@ -0,0 +1,115 @@
"""
show(io::IO, process::QEDProcessDescription)
Pretty print an [`QEDProcessDescription`](@ref) (no newlines).
```jldoctest
julia> using MetagraphOptimization
julia> print(parse_process("ke->ke", QEDModel()))
QED Process: 'ke->ke'
julia> print(parse_process("kk->ep", QEDModel()))
QED Process: 'kk->ep'
```
"""
function show(io::IO, process::QEDProcessDescription)
# types() gives the types in order (QED) instead of random like keys() would
print(io, "QED Process: \'")
for type in types(QEDModel())
for _ in 1:get(process.inParticles, type, 0)
print(io, String(type))
end
end
print(io, "->")
for type in types(QEDModel())
for _ in 1:get(process.outParticles, type, 0)
print(io, String(type))
end
end
print(io, "'")
return nothing
end
"""
show(io::IO, processInput::QEDProcessInput)
Pretty print an [`QEDProcessInput`](@ref) (with newlines).
"""
function show(io::IO, processInput::QEDProcessInput)
println(io, "Input for $(processInput.process):")
println(io, " $(length(processInput.inParticles)) Incoming particles:")
for particle in processInput.inParticles
println(io, " $particle")
end
println(io, " $(length(processInput.outParticles)) Outgoing Particles:")
for particle in processInput.outParticles
println(io, " $particle")
end
return nothing
end
"""
show(io::IO, particle::T) where {T <: QEDParticle}
Pretty print an [`QEDParticle`](@ref) (no newlines).
"""
function show(io::IO, particle::T) where {T <: QEDParticle}
print(io, "$(String(typeof(particle))): $(particle.momentum)")
return nothing
end
"""
show(io::IO, particle::FeynmanParticle)
Pretty print a [`FeynmanParticle`](@ref) (no newlines).
"""
show(io::IO, p::FeynmanParticle) = print(io, "$(String(p.particle))_$(String(direction(p.particle)))_$(p.id)")
"""
show(io::IO, particle::FeynmanVertex)
Pretty print a [`FeynmanVertex`](@ref) (no newlines).
"""
show(io::IO, v::FeynmanVertex) = print(io, "$(v.in1) + $(v.in2) -> $(v.out)")
"""
show(io::IO, particle::FeynmanTie)
Pretty print a [`FeynmanTie`](@ref) (no newlines).
"""
show(io::IO, t::FeynmanTie) = print(io, "$(t.in1) -- $(t.in2)")
"""
show(io::IO, particle::FeynmanDiagram)
Pretty print a [`FeynmanDiagram`](@ref) (with newlines).
"""
function show(io::IO, d::FeynmanDiagram)
print(io, "Initial Particles: [")
first = true
for p in d.particles
if first
first = false
print(io, "$p")
else
print(io, ", $p")
end
end
print(io, "]\n")
for l in eachindex(d.vertices)
print(io, " Virtuality Level $l Vertices: [")
first = true
for v in d.vertices[l]
if first
first = false
print(io, "$v")
else
print(io, ", $v")
end
end
print(io, "]\n")
end
return print(io, " Tie: $(d.tie[])\n")
end

View File

@ -0,0 +1,135 @@
# TODO use correct numbers
"""
compute_effort(t::ComputeTaskQED_S1)
Return the compute effort of an S1 task.
"""
compute_effort(t::ComputeTaskQED_S1)::Float64 = 11.0
"""
compute_effort(t::ComputeTaskQED_S2)
Return the compute effort of an S2 task.
"""
compute_effort(t::ComputeTaskQED_S2)::Float64 = 12.0
"""
compute_effort(t::ComputeTaskQED_U)
Return the compute effort of a U task.
"""
compute_effort(t::ComputeTaskQED_U)::Float64 = 1.0
"""
compute_effort(t::ComputeTaskQED_V)
Return the compute effort of a V task.
"""
compute_effort(t::ComputeTaskQED_V)::Float64 = 6.0
"""
compute_effort(t::ComputeTaskQED_P)
Return the compute effort of a P task.
"""
compute_effort(t::ComputeTaskQED_P)::Float64 = 0.0
"""
compute_effort(t::ComputeTaskQED_Sum)
Return the compute effort of a Sum task.
Note: This is a constant compute effort, even though sum scales with the number of its inputs. Since there is only ever a single sum node in a graph generated from the QED-Model,
this doesn't matter.
"""
compute_effort(t::ComputeTaskQED_Sum)::Float64 = 1.0
"""
show(io::IO, t::ComputeTaskQED_S1)
Print the S1 task to io.
"""
show(io::IO, t::ComputeTaskQED_S1) = print(io, "ComputeS1")
"""
show(io::IO, t::ComputeTaskQED_S2)
Print the S2 task to io.
"""
show(io::IO, t::ComputeTaskQED_S2) = print(io, "ComputeS2")
"""
show(io::IO, t::ComputeTaskQED_P)
Print the P task to io.
"""
show(io::IO, t::ComputeTaskQED_P) = print(io, "ComputeP")
"""
show(io::IO, t::ComputeTaskQED_U)
Print the U task to io.
"""
show(io::IO, t::ComputeTaskQED_U) = print(io, "ComputeU")
"""
show(io::IO, t::ComputeTaskQED_V)
Print the V task to io.
"""
show(io::IO, t::ComputeTaskQED_V) = print(io, "ComputeV")
"""
show(io::IO, t::ComputeTaskQED_Sum)
Print the sum task to io.
"""
show(io::IO, t::ComputeTaskQED_Sum) = print(io, "ComputeSum")
"""
children(::ComputeTaskQED_S1)
Return the number of children of a ComputeTaskQED_S1 (always 1).
"""
children(::ComputeTaskQED_S1) = 1
"""
children(::ComputeTaskQED_S2)
Return the number of children of a ComputeTaskQED_S2 (always 2).
"""
children(::ComputeTaskQED_S2) = 2
"""
children(::ComputeTaskQED_P)
Return the number of children of a ComputeTaskQED_P (always 1).
"""
children(::ComputeTaskQED_P) = 1
"""
children(::ComputeTaskQED_U)
Return the number of children of a ComputeTaskQED_U (always 1).
"""
children(::ComputeTaskQED_U) = 1
"""
children(::ComputeTaskQED_V)
Return the number of children of a ComputeTaskQED_V (always 2).
"""
children(::ComputeTaskQED_V) = 2
"""
children(::ComputeTaskQED_Sum)
Return the number of children of a ComputeTaskQED_Sum.
"""
children(t::ComputeTaskQED_Sum) = t.children_number
function add_child!(t::ComputeTaskQED_Sum)
t.children_number += 1
return nothing
end

51
src/models/qed/types.jl Normal file
View File

@ -0,0 +1,51 @@
"""
ComputeTaskQED_S1 <: AbstractComputeTask
S task with a single child.
"""
struct ComputeTaskQED_S1 <: AbstractComputeTask end
"""
ComputeTaskQED_S2 <: AbstractComputeTask
S task with two children.
"""
struct ComputeTaskQED_S2 <: AbstractComputeTask end
"""
ComputeTaskQED_P <: AbstractComputeTask
P task with no children.
"""
struct ComputeTaskQED_P <: AbstractComputeTask end
"""
ComputeTaskQED_V <: AbstractComputeTask
v task with two children.
"""
struct ComputeTaskQED_V <: AbstractComputeTask end
"""
ComputeTaskQED_U <: AbstractComputeTask
u task with a single child.
"""
struct ComputeTaskQED_U <: AbstractComputeTask end
"""
ComputeTaskQED_Sum <: AbstractComputeTask
Task that sums all its inputs, n children.
"""
mutable struct ComputeTaskQED_Sum <: AbstractComputeTask
children_number::Int
end
"""
QED_TASKS
Constant vector of all tasks of the QED-Model.
"""
QED_TASKS =
[ComputeTaskQED_S1, ComputeTaskQED_S2, ComputeTaskQED_P, ComputeTaskQED_V, ComputeTaskQED_U, ComputeTaskQED_Sum]

View File

@ -21,7 +21,7 @@ end
Equality comparison between two [`ComputeTaskNode`](@ref)s.
"""
function ==(n1::ComputeTaskNode, n2::ComputeTaskNode)
function ==(n1::ComputeTaskNode{TaskType}, n2::ComputeTaskNode{TaskType}) where {TaskType <: AbstractComputeTask}
return n1.id == n2.id
end
@ -30,6 +30,6 @@ end
Equality comparison between two [`DataTaskNode`](@ref)s.
"""
function ==(n1::DataTaskNode, n2::DataTaskNode)
function ==(n1::DataTaskNode{TaskType}, n2::DataTaskNode{TaskType}) where {TaskType <: AbstractDataTask}
return n1.id == n2.id
end

View File

@ -13,8 +13,8 @@ ComputeTaskNode(t::AbstractComputeTask) = ComputeTaskNode(
)
copy(m::Missing) = missing
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(n.task))
copy(n::DataTaskNode) = DataTaskNode(copy(n.task), n.name)
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(task(n)))
copy(n::DataTaskNode) = DataTaskNode(copy(task(n)), n.name)
"""
make_node(t::AbstractTask)

View File

@ -4,7 +4,7 @@
Print a short string representation of the node to io.
"""
function show(io::IO, n::Node)
return print(io, "Node(", n.task, ")")
return print(io, "Node(", task(n), ")")
end
"""

View File

@ -3,25 +3,27 @@
Return whether this node is an entry node in its graph, i.e., it has no children.
"""
is_entry_node(node::Node) = length(node.children) == 0
is_entry_node(node::Node) = length(children(node)) == 0
"""
is_exit_node(node::Node)
Return whether this node is an exit node of its graph, i.e., it has no parents.
"""
is_exit_node(node::Node) = length(node.parents) == 0
is_exit_node(node::Node)::Bool = length(parents(node)) == 0
"""
data(edge::Edge)
task(node::Node)
Return the data transfered by this edge, i.e., 0 if the child is a [`ComputeTaskNode`](@ref), otherwise the child's `data()`.
Return the node's task.
"""
function data(edge::Edge)
if typeof(edge.edge[1]) <: DataTaskNode
return data(edge.edge[1].task)
end
return 0.0
function task(node::DataTaskNode{TaskType})::TaskType where {TaskType <: Union{AbstractDataTask, AbstractComputeTask}}
return node.task
end
function task(
node::ComputeTaskNode{TaskType},
)::TaskType where {TaskType <: Union{AbstractDataTask, AbstractComputeTask}}
return node.task
end
"""
@ -31,8 +33,11 @@ Return a copy of the node's children so it can safely be muted without changing
A node's children are its prerequisite nodes, nodes that need to execute before the task of this node.
"""
function children(node::Node)
return copy(node.children)
function children(node::DataTaskNode)::Vector{ComputeTaskNode}
return node.children
end
function children(node::ComputeTaskNode)::Vector{DataTaskNode}
return node.children
end
"""
@ -42,8 +47,11 @@ Return a copy of the node's parents so it can safely be muted without changing t
A node's parents are its subsequent nodes, nodes that need this node to execute.
"""
function parents(node::Node)
return copy(node.parents)
function parents(node::DataTaskNode)::Vector{ComputeTaskNode}
return node.parents
end
function parents(node::ComputeTaskNode)::Vector{DataTaskNode}
return node.parents
end
"""
@ -53,11 +61,11 @@ Return a vector of all siblings of this node.
A node's siblings are all children of any of its parents. The result contains no duplicates and includes the node itself.
"""
function siblings(node::Node)
function siblings(node::Node)::Set{Node}
result = Set{Node}()
push!(result, node)
for parent in node.parents
union!(result, parent.children)
for parent in parents(node)
union!(result, children(parent))
end
return result
@ -73,11 +81,11 @@ A node's partners are all parents of any of its children. The result contains no
Note: This is very slow when there are multiple children with many parents.
This is less of a problem in [`siblings(node::Node)`](@ref) because (depending on the model) there are no nodes with a large number of children, or only a single one.
"""
function partners(node::Node)
function partners(node::Node)::Set{Node}
result = Set{Node}()
push!(result, node)
for child in node.children
union!(result, child.parents)
for child in children(node)
union!(result, parents(child))
end
return result
@ -90,8 +98,8 @@ Alternative version to [`partners(node::Node)`](@ref), avoiding allocation of a
"""
function partners(node::Node, set::Set{Node})
push!(set, node)
for child in node.children
union!(set, child.parents)
for child in children(node)
union!(set, parents(child))
end
return nothing
end
@ -101,8 +109,8 @@ end
Return whether the `potential_parent` is a parent of `node`.
"""
function is_parent(potential_parent::Node, node::Node)
return potential_parent in node.parents
function is_parent(potential_parent::Node, node::Node)::Bool
return potential_parent in parents(node)
end
"""
@ -110,6 +118,6 @@ end
Return whether the `potential_child` is a child of `node`.
"""
function is_child(potential_child::Node, node::Node)
return potential_child in node.children
function is_child(potential_child::Node, node::Node)::Bool
return potential_child in children(node)
end

View File

@ -33,8 +33,8 @@ Any node that transfers data and does no computation.
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.\\
`.name`: The name of this node for entry nodes into the graph ([`is_entry_node`](@ref)) to reliably assign the inputs to the correct nodes when executing.\\
"""
mutable struct DataTaskNode <: Node
task::AbstractDataTask
mutable struct DataTaskNode{TaskType <: AbstractDataTask} <: Node
task::TaskType
# use vectors as sets have way too much memory overhead
parents::Vector{Node}
@ -73,8 +73,8 @@ Any node that computes a result from inputs using an [`AbstractComputeTask`](@re
`.nodeFusions`: A vector of this node's [`NodeFusion`](@ref)s. For a `ComputeTaskNode` there can be any number of these, unlike the [`DataTaskNode`](@ref)s.\\
`.device`: The Device this node has been scheduled on by a [`Scheduler`](@ref).
"""
mutable struct ComputeTaskNode <: Node
task::AbstractComputeTask
mutable struct ComputeTaskNode{TaskType <: AbstractComputeTask} <: Node
task::TaskType
parents::Vector{Node}
children::Vector{Node}
id::Base.UUID
@ -83,7 +83,7 @@ mutable struct ComputeTaskNode <: Node
nodeSplit::Union{Operation, Missing}
# for ComputeTasks there can be multiple fusions, unlike the DataTasks
nodeFusions::Vector{Operation}
nodeFusions::Vector{<:Operation}
# the device this node is assigned to execute on
device::Union{AbstractDevice, Missing}

View File

@ -29,7 +29,7 @@ function is_valid_node(graph::DAG, node::Node)
@assert is_valid(graph, node.nodeSplit)
end=#
if !(typeof(node.task) <: FusedComputeTask)
if !(typeof(task(node)) <: FusedComputeTask)
# the remaining checks are only necessary for fused compute tasks
return true
end
@ -37,7 +37,7 @@ function is_valid_node(graph::DAG, node::Node)
# every child must be in some input of the task
for child in node.children
str = Symbol(to_var_name(child.id))
@assert (str in node.task.t1_inputs) || (str in node.task.t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(node.task.t1_inputs)\nt2_inputs: $(node.task.t2_inputs)"
@assert (str in task(node).t1_inputs) || (str in task(node).t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(task(node).t1_inputs)\nt2_inputs: $(task(node).t2_inputs)"
end
return true

View File

@ -132,11 +132,11 @@ function revert_diff!(graph::DAG, diff::Diff)
insert_edge!(graph, edge.edge[1], edge.edge[2], track = false)
end
for (node, task) in diff.updatedChildren
for (node, t) in diff.updatedChildren
# node must be fused compute task at this point
@assert typeof(node.task) <: FusedComputeTask
@assert typeof(task(node)) <: FusedComputeTask
node.task = task
node.task = t
end
graph.properties -= GraphProperties(diff)
@ -158,11 +158,11 @@ function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::Com
get_snapshot_diff(graph)
# save children and parents
n1Children = children(n1)
n3Parents = parents(n3)
n1Children = copy(children(n1))
n3Parents = copy(parents(n3))
n1Task = copy(n1.task)
n3Task = copy(n3.task)
n1Task = copy(task(n1))
n3Task = copy(task(n3))
# assemble the input node vectors of n1 and n3 to save into the FusedComputeTask
n1Inputs = Vector{Symbol}()
@ -177,7 +177,7 @@ function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::Com
remove_node!(graph, n2)
# get n3's children now so it automatically excludes n2
n3Children = children(n3)
n3Children = copy(children(n3))
n3Inputs = Vector{Symbol}()
for child in n3Children
@ -228,7 +228,7 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
get_snapshot_diff(graph)
n1 = nodes[1]
n1Children = children(n1)
n1Children = copy(children(n1))
n1Parents = Set(n1.parents)
@ -245,7 +245,7 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
remove_edge!(graph, child, n)
end
for parent in parents(n)
for parent in copy(parents(n))
remove_edge!(graph, n, parent)
# collect all parents
@ -278,14 +278,17 @@ Split the given node into one node per parent, return the applied difference to
For details see [`NodeSplit`](@ref).
"""
function node_split!(graph::DAG, n1::Node)
function node_split!(
graph::DAG,
n1::Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}},
) where {TaskType <: AbstractTask}
@assert is_valid_node_split_input(graph, n1)
# clear snapshot
get_snapshot_diff(graph)
n1Parents = parents(n1)
n1Children = children(n1)
n1Parents = copy(parents(n1))
n1Children = copy(children(n1))
for parent in n1Parents
remove_edge!(graph, n1, parent)

View File

@ -13,18 +13,18 @@ function find_fusions!(graph::DAG, node::DataTaskNode)
return nothing
end
if length(node.parents) != 1 || length(node.children) != 1
if length(parents(node)) != 1 || length(children(node)) != 1
return nothing
end
child_node = first(node.children)
parent_node = first(node.parents)
child_node = first(children(node))
parent_node = first(parents(node))
if !(child_node in graph) || !(parent_node in graph)
error("Parents/Children that are not in the graph!!!")
end
if length(child_node.parents) != 1
if length(parents(child_node)) != 1
return nothing
end
@ -44,11 +44,11 @@ Find node fusions involving the given compute node. The function pushes the foun
"""
function find_fusions!(graph::DAG, node::ComputeTaskNode)
# just find fusions in neighbouring DataTaskNodes
for child in node.children
for child in children(node)
find_fusions!(graph, child)
end
for parent in node.parents
for parent in parents(node)
find_fusions!(graph, parent)
end
@ -123,7 +123,10 @@ end
Sort this node's parent and child sets, then find fusions, reductions and splits involving it. Needs to be called after the node was changed in some way.
"""
function clean_node!(graph::DAG, node::Node)
function clean_node!(
graph::DAG,
node::Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}},
) where {TaskType <: AbstractTask}
sort_node!(node)
find_fusions!(graph, node)

View File

@ -203,18 +203,18 @@ function generate_operations(graph::DAG)
# --- find possible node fusions ---
@threads for node in nodeArray
if (typeof(node) <: DataTaskNode)
if length(node.parents) != 1
if length(parents(node)) != 1
# data node can only have a single parent
continue
end
parent_node = first(node.parents)
parent_node = first(parents(node))
if length(node.children) != 1
if length(children(node)) != 1
# this node is an entry node or has multiple children which should not be possible
continue
end
child_node = first(node.children)
if (length(child_node.parents) != 1)
child_node = first(children(node))
if (length(parents(child_node)) != 1)
continue
end

View File

@ -14,9 +14,7 @@ function get_operations(graph::DAG)
generate_operations(graph)
end
for node in graph.dirtyNodes
clean_node!(graph, node)
end
clean_node!.(Ref(graph), graph.dirtyNodes)
empty!(graph.dirtyNodes)
return graph.possibleOperations

39
src/operation/iterate.jl Normal file
View File

@ -0,0 +1,39 @@
import Base.iterate
const _POSSIBLE_OPERATIONS_FIELDS = fieldnames(PossibleOperations)
_POIteratorStateType =
NamedTuple{(:result, :state), Tuple{Union{NodeFusion, NodeReduction, NodeSplit}, Tuple{Symbol, Int64}}}
@inline function iterate(possibleOperations::PossibleOperations)::Union{Nothing, _POIteratorStateType}
for fieldname in _POSSIBLE_OPERATIONS_FIELDS
iterator = iterate(getfield(possibleOperations, fieldname))
if (!isnothing(iterator))
return (result = iterator[1], state = (fieldname, iterator[2]))
end
end
return nothing
end
@inline function iterate(possibleOperations::PossibleOperations, state)::Union{Nothing, _POIteratorStateType}
newStateSym = state[1]
newStateIt = iterate(getfield(possibleOperations, newStateSym), state[2])
if !isnothing(newStateIt)
return (result = newStateIt[1], state = (newStateSym, newStateIt[2]))
end
# cycle to next field
index = findfirst(x -> x == newStateSym, _POSSIBLE_OPERATIONS_FIELDS) + 1
while index <= length(_POSSIBLE_OPERATIONS_FIELDS)
newStateSym = _POSSIBLE_OPERATIONS_FIELDS[index]
newStateIt = iterate(getfield(possibleOperations, newStateSym))
if !isnothing(newStateIt)
return (result = newStateIt[1], state = (newStateSym, newStateIt[2]))
end
index += 1
end
return nothing
end

View File

@ -30,7 +30,7 @@ function show(io::IO, op::NodeReduction)
print(io, "NR: ")
print(io, length(op.input))
print(io, "x")
return print(io, op.input[1].task)
return print(io, task(op.input[1]))
end
"""
@ -40,7 +40,7 @@ Print a string representation of the node split to io.
"""
function show(io::IO, op::NodeSplit)
print(io, "NS: ")
return print(io, op.input.task)
return print(io, task(op.input))
end
"""
@ -50,9 +50,9 @@ Print a string representation of the node fusion to io.
"""
function show(io::IO, op::NodeFusion)
print(io, "NF: ")
print(io, op.input[1].task)
print(io, task(op.input[1]))
print(io, "->")
print(io, op.input[2].task)
print(io, task(op.input[2]))
print(io, "->")
return print(io, op.input[3].task)
return print(io, task(op.input[3]))
end

View File

@ -40,8 +40,9 @@ A chain of (n1, n2, n3) can be fused if:
See also: [`can_fuse`](@ref)
"""
struct NodeFusion <: Operation
input::Tuple{ComputeTaskNode, DataTaskNode, ComputeTaskNode}
struct NodeFusion{TaskType1 <: AbstractComputeTask, TaskType2 <: AbstractDataTask, TaskType3 <: AbstractComputeTask} <:
Operation
input::Tuple{ComputeTaskNode{TaskType1}, DataTaskNode{TaskType2}, ComputeTaskNode{TaskType3}}
end
"""
@ -49,8 +50,12 @@ end
The applied version of the [`NodeFusion`](@ref).
"""
struct AppliedNodeFusion <: AppliedOperation
operation::NodeFusion
struct AppliedNodeFusion{
TaskType1 <: AbstractComputeTask,
TaskType2 <: AbstractDataTask,
TaskType3 <: AbstractComputeTask,
} <: AppliedOperation
operation::NodeFusion{TaskType1, TaskType2, TaskType3}
diff::Diff
end
@ -73,8 +78,8 @@ A vector of nodes can be reduced if:
See also: [`can_reduce`](@ref)
"""
struct NodeReduction <: Operation
input::Vector{Node}
struct NodeReduction{NodeType <: Node} <: Operation
input::Vector{NodeType}
end
"""
@ -82,8 +87,8 @@ end
The applied version of the [`NodeReduction`](@ref).
"""
struct AppliedNodeReduction <: AppliedOperation
operation::NodeReduction
struct AppliedNodeReduction{NodeType <: Node} <: AppliedOperation
operation::NodeReduction{NodeType}
diff::Diff
end
@ -102,8 +107,8 @@ A node can be split if:
See also: [`can_split`](@ref)
"""
struct NodeSplit <: Operation
input::Node
struct NodeSplit{NodeType <: Node} <: Operation
input::NodeType
end
"""
@ -111,7 +116,7 @@ end
The applied version of the [`NodeSplit`](@ref).
"""
struct AppliedNodeSplit <: AppliedOperation
operation::NodeSplit
struct AppliedNodeSplit{NodeType <: Node} <: AppliedOperation
operation::NodeSplit{NodeType}
diff::Diff
end

View File

@ -61,7 +61,7 @@ function can_fuse(n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
return false
end
if length(n2.parents) != 1 || length(n2.children) != 1 || length(n1.parents) != 1
if length(parents(n2)) != 1 || length(children(n2)) != 1 || length(parents(n1)) != 1
return false
end
@ -74,12 +74,15 @@ end
Return whether the given two nodes can be reduced. See [`NodeReduction`](@ref) for the requirements.
"""
function can_reduce(n1::Node, n2::Node)
if (n1.task != n2.task)
return false
end
return false
end
n1_length = length(n1.children)
n2_length = length(n2.children)
function can_reduce(
n1::NodeType,
n2::NodeType,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
n1_length = length(children(n1))
n2_length = length(children(n2))
if (n1_length != n2_length)
return false
@ -88,19 +91,19 @@ function can_reduce(n1::Node, n2::Node)
# this seems to be the most common case so do this first
# doing it manually is a lot faster than using the sets for a general solution
if (n1_length == 2)
if (n1.children[1] != n2.children[1])
if (n1.children[1] != n2.children[2])
if (children(n1)[1] != children(n2)[1])
if (children(n1)[1] != children(n2)[2])
return false
end
# 1_1 == 2_2
if (n1.children[2] != n2.children[1])
if (children(n1)[2] != children(n2)[1])
return false
end
return true
end
# 1_1 == 2_1
if (n1.children[2] != n2.children[2])
if (children(n1)[2] != children(n2)[2])
return false
end
return true
@ -108,11 +111,11 @@ function can_reduce(n1::Node, n2::Node)
# this is simple
if (n1_length == 1)
return n1.children[1] == n2.children[1]
return children(n1)[1] == children(n2)[1]
end
# this takes a long time
return Set(n1.children) == Set(n2.children)
return Set(children(n1)) == Set(children(n2))
end
"""
@ -138,7 +141,14 @@ end
Equality comparison between two node fusions. Two node fusions are considered equal if they have the same inputs.
"""
function ==(op1::NodeFusion, op2::NodeFusion)
function ==(
op1::NodeFusion{ComputeTaskType1, DataTaskType, ComputeTaskType2},
op2::NodeFusion{ComputeTaskType1, DataTaskType, ComputeTaskType2},
) where {
ComputeTaskType1 <: AbstractComputeTask,
DataTaskType <: AbstractDataTask,
ComputeTaskType2 <: AbstractComputeTask,
}
# there can only be one node fusion on a given data task, so if the data task is the same, the fusion is the same
return op1.input[2] == op2.input[2]
end

View File

@ -54,9 +54,9 @@ function is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node})
@assert is_valid(graph, n)
end
t = typeof(nodes[1].task)
t = typeof(task(nodes[1]))
for n in nodes
if typeof(n.task) != t
if typeof(task(n)) != t
throw(AssertionError("[Node Reduction] The given nodes are not of the same type"))
end
@ -115,7 +115,7 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, nr::NodeReduction)
@assert is_valid_node_reduction_input(graph, nr.input)
@assert nr in graph.possibleOperations.nodeReductions "NodeReduction is not part of the graph's possible operations!"
#@assert nr in graph.possibleOperations.nodeReductions "NodeReduction is not part of the graph's possible operations!"
return true
end
@ -128,7 +128,7 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, ns::NodeSplit)
@assert is_valid_node_split_input(graph, ns.input)
@assert ns in graph.possibleOperations.nodeSplits "NodeSplit is not part of the graph's possible operations!"
#@assert ns in graph.possibleOperations.nodeSplits "NodeSplit is not part of the graph's possible operations!"
return true
end
@ -141,6 +141,6 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, nf::NodeFusion)
@assert is_valid_node_fusion_input(graph, nf.input[1], nf.input[2], nf.input[3])
@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
#@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
return true
end

View File

@ -0,0 +1,73 @@
"""
GreedyOptimizer
An implementation of the greedy optimization algorithm, simply choosing the best next option evaluated with the given estimator.
The fixpoint is reached when any leftover operation would increase the graph's total cost according to the given estimator.
"""
struct GreedyOptimizer{EstimatorType <: AbstractEstimator} <: AbstractOptimizer
estimator::EstimatorType
end
function optimize_step!(optimizer::GreedyOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if isempty(operations)
return false
end
result = nothing
lowestCost = reduce(
(acc, op) -> begin
op_cost = operation_effect(optimizer.estimator, graph, op)
if op_cost < acc
result = op
return op_cost
end
return acc
end,
operations;
init = typemax(cost_type(optimizer.estimator)),
)
if lowestCost > zero(cost_type(optimizer.estimator))
return false
end
push_operation!(graph, result)
return true
end
function fixpoint_reached(optimizer::GreedyOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if isempty(operations)
return true
end
lowestCost = reduce(
(acc, op) -> begin
op_cost = operation_effect(optimizer.estimator, graph, op)
if op_cost < acc
return op_cost
end
return acc
end,
operations;
init = typemax(cost_type(optimizer.estimator)),
)
if lowestCost > zero(cost_type(optimizer.estimator))
return true
end
return false
end
function optimize_to_fixpoint!(optimizer::GreedyOptimizer, graph::DAG)
while optimize_step!(optimizer, graph)
end
return nothing
end

View File

@ -0,0 +1,60 @@
"""
AbstractOptimizer
Abstract base type for optimizer implementations.
"""
abstract type AbstractOptimizer end
"""
optimize_step!(optimizer::AbstractOptimizer, graph::DAG)
Interface function that must be implemented by implementations of [`AbstractOptimizer`](@ref). Returns `true` if an operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached.
It should do one smallest logical step on the given [`DAG`](@ref), muting the graph and, if necessary, the optimizer's state.
"""
function optimize_step! end
"""
optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int)
Function calling the given optimizer `n` times, muting the graph. Returns `true` if the requested number of operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached.
If a more efficient method exists, this can be overloaded for a specific optimizer.
"""
function optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int)
for i in 1:n
if !optimize_step!(optimizer, graph)
return false
end
end
return true
end
"""
fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG)
Interface function that can be implemented by optimization algorithms that can reach a fixpoint, returning as a `Bool` whether it has been reached. The default implementation returns `false`.
See also: [`optimize_to_fixpoint!`](@ref)
"""
function fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG)
return false
end
"""
optimize_to_fixpoint!(optimizer::AbstractOptimizer, graph::DAG)
Interface function that can be implemented by optimization algorithms that can reach a fixpoint. The algorithm will be run until that fixpoint is reached, at which point [`fixpoint_reached`](@ref) should return true.
A usual implementation might look like this:
```julia
function optimize_to_fixpoint!(optimizer::MyOptimizer, graph::DAG)
while !fixpoint_reached(optimizer, graph)
optimize_step!(optimizer, graph)
end
return nothing
end
```
"""
function optimize_to_fixpoint! end

View File

@ -0,0 +1,49 @@
using Random
"""
RandomWalkOptimizer
An optimizer that randomly pushes or pops operations. It doesn't optimize in any direction and is useful mainly for testing purposes.
This algorithm never reaches a fixpoint, so it does not implement [`optimize_to_fixpoint`](@ref).
"""
struct RandomWalkOptimizer <: AbstractOptimizer
rng::AbstractRNG
end
function optimize_step!(optimizer::RandomWalkOptimizer, graph::DAG)
operations = get_operations(graph)
if sum(length(operations)) == 0 && length(graph.appliedOperations) + length(graph.operationsToApply) == 0
# in case there are zero operations possible at all on the graph
return false
end
r = optimizer.rng
# try until something was applied or popped
while true
# choose push or pop
if rand(r, Bool)
# push
# choose one of fuse/split/reduce
option = rand(r, 1:3)
if option == 1 && !isempty(operations.nodeFusions)
push_operation!(graph, rand(r, collect(operations.nodeFusions)))
return true
elseif option == 2 && !isempty(operations.nodeReductions)
push_operation!(graph, rand(r, collect(operations.nodeReductions)))
return true
elseif option == 3 && !isempty(operations.nodeSplits)
push_operation!(graph, rand(r, collect(operations.nodeSplits)))
return true
end
else
# pop
if (can_pop(graph))
pop_operation!(graph)
return true
end
end
end
end

View File

@ -0,0 +1,30 @@
"""
ReductionOptimizer
An optimizer that simply applies an available [`NodeReduction`](@ref) on each step. It implements [`optimize_to_fixpoint`](@ref). The fixpoint is reached when there are no more possible [`NodeReduction`](@ref)s in the graph.
"""
struct ReductionOptimizer <: AbstractOptimizer end
function optimize_step!(optimizer::ReductionOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if fixpoint_reached(optimizer, graph)
return false
end
push_operation!(graph, first(operations.nodeReductions))
return true
end
function fixpoint_reached(optimizer::ReductionOptimizer, graph::DAG)
operations = get_operations(graph)
return isempty(operations.nodeReductions)
end
function optimize_to_fixpoint!(optimizer::ReductionOptimizer, graph::DAG)
while !fixpoint_reached(optimizer, graph)
optimize_step!(optimizer, graph)
end
return nothing
end

View File

@ -4,14 +4,18 @@
Create an empty [`GraphProperties`](@ref) object.
"""
function GraphProperties()
return (
data = 0.0,
computeEffort = 0.0,
computeIntensity = 0.0,
cost = 0.0,
noNodes = 0,
noEdges = 0,
)::GraphProperties
return (data = 0.0, computeEffort = 0.0, computeIntensity = 0.0, noNodes = 0, noEdges = 0)::GraphProperties
end
@inline function _props(
node::DataTaskNode{TaskType},
)::Tuple{Float64, Float64, Int64} where {TaskType <: AbstractDataTask}
return (data(task(node)) * length(parents(node)), 0.0, length(parents(node)))
end
@inline function _props(
node::ComputeTaskNode{TaskType},
)::Tuple{Float64, Float64, Int64} where {TaskType <: AbstractComputeTask}
return (0.0, compute_effort(task(node)), length(parents(node)))
end
"""
@ -27,16 +31,16 @@ function GraphProperties(graph::DAG)
ce = 0.0
ed = 0
for node in graph.nodes
d += data(node.task) * length(node.parents)
ce += compute_effort(node.task)
ed += length(node.parents)
props = _props(node)
d += props[1]
ce += props[2]
ed += props[3]
end
return (
data = d,
computeEffort = ce,
computeIntensity = (d == 0) ? 0.0 : ce / d,
cost = 0.0, # TODO
noNodes = length(graph.nodes),
noEdges = ed,
)::GraphProperties
@ -50,23 +54,18 @@ The graph's properties after applying the [`Diff`](@ref) will be `get_properties
For reverting a diff, it's `get_properties(graph) - GraphProperties(diff)`.
"""
function GraphProperties(diff::Diff)
d = 0.0
ce = 0.0
c = 0.0 # TODO
ce =
reduce(+, compute_effort(n.task) for n in diff.addedNodes; init = 0.0) -
reduce(+, compute_effort(n.task) for n in diff.removedNodes; init = 0.0)
reduce(+, compute_effort(task(n)) for n in diff.addedNodes; init = 0.0) -
reduce(+, compute_effort(task(n)) for n in diff.removedNodes; init = 0.0)
d =
reduce(+, data(e) for e in diff.addedEdges; init = 0.0) -
reduce(+, data(e) for e in diff.removedEdges; init = 0.0)
reduce(+, data(task(n)) for n in diff.addedNodes; init = 0.0) -
reduce(+, data(task(n)) for n in diff.removedNodes; init = 0.0)
return (
data = d,
computeEffort = ce,
computeIntensity = (d == 0) ? 0.0 : ce / d,
cost = c,
noNodes = length(diff.addedNodes) - length(diff.removedNodes),
noEdges = length(diff.addedEdges) - length(diff.removedEdges),
)::GraphProperties

View File

@ -7,11 +7,10 @@ Representation of a [`DAG`](@ref)'s properties.
`.data`: The total data transfer.\\
`.computeEffort`: The total compute effort.\\
`.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`.\\
`.cost`: The estimated cost.\\
`.noNodes`: Number of [`Node`](@ref)s.\\
`.noEdges`: Number of [`Edge`](@ref)s.
"""
const GraphProperties = NamedTuple{
(:data, :computeEffort, :computeIntensity, :cost, :noNodes, :noEdges),
Tuple{Float64, Float64, Float64, Float64, Int, Int},
(:data, :computeEffort, :computeIntensity, :noNodes, :noEdges),
Tuple{Float64, Float64, Float64, Int, Int},
}

View File

@ -13,7 +13,6 @@ function -(prop1::GraphProperties, prop2::GraphProperties)
else
(prop1.computeEffort - prop2.computeEffort) / (prop1.data - prop2.data)
end,
cost = prop1.cost - prop2.cost,
noNodes = prop1.noNodes - prop2.noNodes,
noEdges = prop1.noEdges - prop2.noEdges,
)::GraphProperties
@ -34,7 +33,6 @@ function +(prop1::GraphProperties, prop2::GraphProperties)
else
(prop1.computeEffort + prop2.computeEffort) / (prop1.data + prop2.data)
end,
cost = prop1.cost + prop2.cost,
noNodes = prop1.noNodes + prop2.noNodes,
noEdges = prop1.noEdges + prop2.noEdges,
)::GraphProperties
@ -50,7 +48,6 @@ function -(prop::GraphProperties)
data = -prop.data,
computeEffort = -prop.computeEffort,
computeIntensity = prop.computeIntensity, # no negation here!
cost = -prop.cost,
noNodes = -prop.noNodes,
noEdges = -prop.noEdges,
)::GraphProperties

View File

@ -32,14 +32,14 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
if (isa(node, ComputeTaskNode))
lowestDevice = peek(deviceAccCost)[1]
node.device = lowestDevice
deviceAccCost[lowestDevice] = compute_effort(node.task)
deviceAccCost[lowestDevice] = compute_effort(task(node))
end
push!(schedule, node)
for parent in node.parents
for parent in parents(node)
# reduce the priority of all parents by one
if (!haskey(nodeQueue, parent))
enqueue!(nodeQueue, parent => length(parent.children) - 1)
enqueue!(nodeQueue, parent => length(children(parent)) - 1)
else
nodeQueue[parent] = nodeQueue[parent] - 1
end

View File

@ -41,16 +41,16 @@ end
Generate and return code for a given [`ComputeTaskNode`](@ref).
"""
function get_expression(node::ComputeTaskNode)
@assert length(node.children) <= children(node.task) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(node.task))\nNode's children: $(getfield.(node.children, :children))"
@assert length(children(node)) <= children(task(node)) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(task(node)))\nNode's children: $(getfield.(node.children, :children))"
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
inExprs = Vector()
for id in getfield.(node.children, :id)
for id in getfield.(children(node), :id)
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
end
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
return get_expression(node.task, node.device, inExprs, outExpr)
return get_expression(task(node), node.device, inExprs, outExpr)
end
"""
@ -59,11 +59,11 @@ end
Generate and return code for a given [`DataTaskNode`](@ref).
"""
function get_expression(node::DataTaskNode)
@assert length(node.children) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
@assert length(children(node)) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
# TODO: dispatch to device implementations generating the copy commands
child = node.children[1]
child = children(node)[1]
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
dataTransportExp = Meta.parse("$outExpr = $inExpr")
@ -79,7 +79,7 @@ Generate and return code for the initial input reading expression for [`DataTask
See also: [`get_entry_nodes`](@ref)
"""
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
@assert isempty(node.children) "Trying to call get_init_expression on a data task node that is not an entry node."
@assert isempty(children(node)) "Trying to call get_init_expression on a data task node that is not an entry node."
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))

View File

@ -17,15 +17,16 @@ copy(t::AbstractComputeTask) = typeof(t)()
Return a copy of th egiven [`FusedComputeTask`](@ref).
"""
function copy(t::FusedComputeTask{T1, T2}) where {T1, T2}
return FusedComputeTask{T1, T2}(
copy(t.first_task),
copy(t.second_task),
copy(t.t1_inputs),
t.t1_output,
copy(t.t2_inputs),
)
function copy(t::FusedComputeTask)
return FusedComputeTask(copy(t.first_task), copy(t.second_task), copy(t.t1_inputs), t.t1_output, copy(t.t2_inputs))
end
FusedComputeTask{T1, T2}(t1_inputs::Vector{String}, t1_output::String, t2_inputs::Vector{String}) where {T1, T2} =
FusedComputeTask{T1, T2}(T1(), T2(), t1_inputs, t1_output, t2_inputs)
function FusedComputeTask(
T1::Type{<:AbstractComputeTask},
T2::Type{<:AbstractComputeTask},
t1_inputs::Vector{String},
t1_output::String,
t2_inputs::Vector{String},
)
return FusedComputeTask(T1(), T2(), t1_inputs, t1_output, t2_inputs)
end

View File

@ -6,3 +6,12 @@ Print a string representation of the fused compute task to io.
function show(io::IO, t::FusedComputeTask)
return print(io, "ComputeFuse($(t.first_task), $(t.second_task))")
end
"""
show(io::IO, t::DataTask)
Print the data task to io.
"""
function show(io::IO, t::DataTask)
return print(io, "Data", t.data)
end

View File

@ -30,7 +30,7 @@ compute(t::AbstractDataTask; data...) = data
Fallback implementation of the compute effort of a task, throwing an error.
"""
function compute_effort(t::AbstractTask)
function compute_effort(t::AbstractTask)::Float64
# default implementation using compute
return error("Need to implement compute_effort()")
end
@ -40,7 +40,7 @@ end
Fallback implementation of the data of a task, throwing an error.
"""
function data(t::AbstractTask)
function data(t::AbstractTask)::Float64
return error("Need to implement data()")
end
@ -49,28 +49,51 @@ end
Return the compute effort of a data task, always zero, regardless of the specific task.
"""
compute_effort(t::AbstractDataTask) = 0
compute_effort(t::AbstractDataTask)::Float64 = 0.0
"""
data(t::AbstractDataTask)
Return the data of a data task. Given by the task's `.data` field.
"""
data(t::AbstractDataTask) = getfield(t, :data)
data(t::AbstractDataTask)::Float64 = getfield(t, :data)
"""
copy(t::DataTask)
Copy the data task and return it.
"""
copy(t::DataTask) = DataTask(t.data)
"""
children(::DataTask)
Return the number of children of a data task (always 1).
"""
children(::DataTask) = 1
"""
children(t::FusedComputeTask)
Return the number of children of a FusedComputeTask.
"""
function children(t::FusedComputeTask)
return length(union(Set(t.t1_inputs), Set(t.t2_inputs)))
end
"""
data(t::AbstractComputeTask)
Return the data of a compute task, always zero, regardless of the specific task.
"""
data(t::AbstractComputeTask) = 0
data(t::AbstractComputeTask)::Float64 = 0.0
"""
compute_effort(t::FusedComputeTask)
Return the compute effort of a fused compute task.
"""
function compute_effort(t::FusedComputeTask)
function compute_effort(t::FusedComputeTask)::Float64
return compute_effort(t.first_task) + compute_effort(t.second_task)
end
@ -79,4 +102,4 @@ end
Return a tuple of a the fused compute task's components' types.
"""
get_types(::FusedComputeTask{T1, T2}) where {T1, T2} = (T1, T2)
get_types(t::FusedComputeTask) = (typeof(t.first_task), typeof(t.second_task))

View File

@ -19,6 +19,15 @@ The shared base type for any data task.
"""
abstract type AbstractDataTask <: AbstractTask end
"""
DataTask <: AbstractDataTask
Task representing a specific data transfer.
"""
struct DataTask <: AbstractDataTask
data::Float64
end
"""
FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <: AbstractComputeTask
@ -26,9 +35,9 @@ A fused compute task made up of the computation of first `T1` and then `T2`.
Also see: [`get_types`](@ref).
"""
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <: AbstractComputeTask
first_task::T1
second_task::T2
struct FusedComputeTask <: AbstractComputeTask
first_task::AbstractComputeTask
second_task::AbstractComputeTask
# the names of the inputs for T1
t1_inputs::Vector{Symbol}
# output name of T1

View File

@ -3,9 +3,9 @@
Helper struct for [`NodeTrie`](@ref). After the Trie's first level, every Trie level contains the vector of nodes that had children up to that level, and the TrieNode's children by UUID of the node's children.
"""
mutable struct NodeIdTrie
value::Vector{Node}
children::Dict{UUID, NodeIdTrie}
mutable struct NodeIdTrie{NodeType <: Node}
value::Vector{NodeType}
children::Dict{UUID, NodeIdTrie{NodeType}}
end
"""
@ -35,8 +35,8 @@ end
Constructor for an empty [`NodeIdTrie`](@ref).
"""
function NodeIdTrie()
return NodeIdTrie(Vector{Node}(), Dict{UUID, NodeIdTrie}())
function NodeIdTrie{NodeType}() where {NodeType <: Node}
return NodeIdTrie(Vector{NodeType}(), Dict{UUID, NodeIdTrie{NodeType}}())
end
"""
@ -44,8 +44,12 @@ end
Insert the given node into the trie. The depth is used to iterate through the trie layers, while the function calls itself recursively until it ran through all children of the node.
"""
function insert_helper!(trie::NodeIdTrie, node::Node, depth::Int)
if (length(node.children) == depth)
function insert_helper!(
trie::NodeIdTrie{NodeType},
node::NodeType,
depth::Int,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
if (length(children(node)) == depth)
push!(trie.value, node)
return nothing
end
@ -54,7 +58,7 @@ function insert_helper!(trie::NodeIdTrie, node::Node, depth::Int)
id = node.children[depth].id
if (!haskey(trie.children, id))
trie.children[id] = NodeIdTrie()
trie.children[id] = NodeIdTrie{NodeType}()
end
return insert_helper!(trie.children[id], node, depth)
end
@ -64,12 +68,14 @@ end
Insert the given node into the trie. It's sorted by its type in the first layer, then by its children in the following layers.
"""
function insert!(trie::NodeTrie, node::Node)
t = typeof(node.task)
if (!haskey(trie.children, t))
trie.children[t] = NodeIdTrie()
function insert!(
trie::NodeTrie,
node::NodeType,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
if (!haskey(trie.children, NodeType))
trie.children[NodeType] = NodeIdTrie{NodeType}()
end
return insert_helper!(trie.children[typeof(node.task)], node, 0)
return insert_helper!(trie.children[NodeType], node, 0)
end
"""

View File

@ -36,8 +36,8 @@ Sort the nodes' parents and children vectors. The vectors are mostly very short
Sorted nodes are required to make the finding of [`NodeReduction`](@ref)s a lot faster using the [`NodeTrie`](@ref) data structure.
"""
function sort_node!(node::Node)
sort!(node.children, lt = lt_nodes)
return sort!(node.parents, lt = lt_nodes)
sort!(children(node), lt = lt_nodes)
return sort!(parents(node), lt = lt_nodes)
end
"""
@ -103,3 +103,139 @@ function unroll_symbol_vector(vec::Vector)
end
return result
end
####################
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
# use qedphasespaces directly once released
#
# quick and dirty implementation of the RAMBO algorithm
#
# reference:
# * https://cds.cern.ch/record/164736/files/198601282.pdf
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
####################
function generate_initial_moms(ss, masses)
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
rho1 = sqrt(E1^2 - masses[1]^2)
rho2 = sqrt(E2^2 - masses[2]^2)
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
end
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
function _transform_uni_to_mom(u1, u2, u3, u4)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return SFourMomentum(q0, qx, qy, qz)
end
function _transform_uni_to_mom!(uni_mom, dest)
u1, u2, u3, u4 = Tuple(uni_mom)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return dest = SFourMomentum(q0, qx, qy, qz)
end
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
function generate_massless_moms(rng, n::Int)
a = Vector{SFourMomentum}(undef, n)
rand!(rng, a)
return map(_transform_uni_to_mom, a)
end
function generate_physical_massless_moms(rng, ss, n)
r_moms = generate_massless_moms(rng, n)
Q = sum(r_moms)
M = sqrt(Q * Q)
fac = -1 / M
Qx = getX(Q)
Qy = getY(Q)
Qz = getZ(Q)
bx = fac * Qx
by = fac * Qy
bz = fac * Qz
gamma = getT(Q) / M
a = 1 / (1 + gamma)
x = ss / M
i = 1
while i <= n
mom = r_moms[i]
mom0 = getT(mom)
mom1 = getX(mom)
mom2 = getY(mom)
mom3 = getZ(mom)
bq = bx * mom1 + by * mom2 + bz * mom3
p0 = x * (gamma * mom0 + bq)
px = x * (mom1 + bx * mom0 + a * bq * bx)
py = x * (mom2 + by * mom0 + a * bq * by)
pz = x * (mom3 + bz * mom0 + a * bq * bz)
r_moms[i] = SFourMomentum(p0, px, py, pz)
i += 1
end
return r_moms
end
function _to_be_solved(xi, masses, p0s, ss)
sum = 0.0
for (i, E) in enumerate(p0s)
sum += sqrt(masses[i]^2 + xi^2 * E^2)
end
return sum - ss
end
function _build_massive_momenta(xi, masses, massless_moms)
vec = SFourMomentum[]
i = 1
while i <= length(massless_moms)
massless_mom = massless_moms[i]
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
kx = xi * getX(massless_mom)
ky = xi * getY(massless_mom)
kz = xi * getZ(massless_mom)
push!(vec, SFourMomentum(k0, kx, ky, kz))
i += 1
end
return vec
end
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
n = length(masses)
massless_moms = generate_physical_massless_moms(rng, ss, n)
energies = getT.(massless_moms)
f = x -> _to_be_solved(x, masses, energies, ss)
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
return _build_massive_momenta(xi, masses, massless_moms)
end

View File

@ -1,4 +1,8 @@
[deps]
AccurateArithmetic = "22286c92-06ac-501d-9306-4abd417d9753"
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
QEDprocesses = "46de9c38-1bb3-4547-a1ec-da24d767fdad"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

View File

@ -1,3 +1,4 @@
using MetagraphOptimization
using Random
function test_known_graph(name::String, n, fusion_test = true)
@ -88,9 +89,6 @@ end
Random.seed!(0)
@testset "Test Known ABC-Graphs" begin
test_known_graph("AB->AB", 10000)
test_known_graph("AB->ABBB", 10000)
test_known_graph("AB->ABBBBB", 1000, false)
end
println("Known Graph Testing Complete!")
test_known_graph("AB->AB", 10000)
test_known_graph("AB->ABBB", 10000)
test_known_graph("AB->ABBBBB", 1000, false)

View File

@ -1,99 +1,98 @@
using MetagraphOptimization
import MetagraphOptimization.insert_node!
import MetagraphOptimization.insert_edge!
import MetagraphOptimization.make_node
@testset "Unit Tests Node Reduction" begin
graph = MetagraphOptimization.DAG()
graph = MetagraphOptimization.DAG()
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskABC_S2()), track = false)
ED = insert_node!(graph, make_node(DataTask(3)), track = false)
FD = insert_node!(graph, make_node(DataTask(3)), track = false)
ED = insert_node!(graph, make_node(DataTask(3)), track = false)
FD = insert_node!(graph, make_node(DataTask(3)), track = false)
EC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
FC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
EC = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false)
FC = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false)
A1D = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), track = false)
C1D = insert_node!(graph, make_node(DataTask(4)), track = false)
A1D = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), track = false)
C1D = insert_node!(graph, make_node(DataTask(4)), track = false)
A1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
C1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
A1C = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
C1C = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
AD = insert_node!(graph, make_node(DataTask(5)), track = false)
BD = insert_node!(graph, make_node(DataTask(5)), track = false)
CD = insert_node!(graph, make_node(DataTask(5)), track = false)
AD = insert_node!(graph, make_node(DataTask(5)), track = false)
BD = insert_node!(graph, make_node(DataTask(5)), track = false)
CD = insert_node!(graph, make_node(DataTask(5)), track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, ED, s0, track = false)
insert_edge!(graph, FD, s0, track = false)
insert_edge!(graph, EC, ED, track = false)
insert_edge!(graph, FC, FD, track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, ED, s0, track = false)
insert_edge!(graph, FD, s0, track = false)
insert_edge!(graph, EC, ED, track = false)
insert_edge!(graph, FC, FD, track = false)
insert_edge!(graph, A1D, EC, track = false)
insert_edge!(graph, B1D_1, EC, track = false)
insert_edge!(graph, A1D, EC, track = false)
insert_edge!(graph, B1D_1, EC, track = false)
insert_edge!(graph, B1D_2, FC, track = false)
insert_edge!(graph, C1D, FC, track = false)
insert_edge!(graph, B1D_2, FC, track = false)
insert_edge!(graph, C1D, FC, track = false)
insert_edge!(graph, A1C, A1D, track = false)
insert_edge!(graph, B1C_1, B1D_1, track = false)
insert_edge!(graph, B1C_2, B1D_2, track = false)
insert_edge!(graph, C1C, C1D, track = false)
insert_edge!(graph, A1C, A1D, track = false)
insert_edge!(graph, B1C_1, B1D_1, track = false)
insert_edge!(graph, B1C_2, B1D_2, track = false)
insert_edge!(graph, C1C, C1D, track = false)
insert_edge!(graph, AD, A1C, track = false)
insert_edge!(graph, BD, B1C_1, track = false)
insert_edge!(graph, BD, B1C_2, track = false)
insert_edge!(graph, CD, C1C, track = false)
insert_edge!(graph, AD, A1C, track = false)
insert_edge!(graph, BD, B1C_1, track = false)
insert_edge!(graph, BD, B1C_2, track = false)
insert_edge!(graph, CD, C1C, track = false)
@test is_valid(graph)
@test is_valid(graph)
@test is_exit_node(d_exit)
@test is_entry_node(AD)
@test is_entry_node(BD)
@test is_entry_node(CD)
@test is_exit_node(d_exit)
@test is_entry_node(AD)
@test is_entry_node(BD)
@test is_entry_node(CD)
opt = get_operations(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("Initial State:\n", opt)
#println("Initial State:\n", opt)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1C_1, B1C_2])
push_operation!(graph, nr)
opt = get_operations(graph)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1C_1, B1C_2])
push_operation!(graph, nr)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After 1 Node Reduction:\n", opt)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After 1 Node Reduction:\n", opt)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1D_1, B1D_2])
push_operation!(graph, nr)
opt = get_operations(graph)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1D_1, B1D_2])
push_operation!(graph, nr)
opt = get_operations(graph)
@test is_valid(graph)
@test is_valid(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 0, nodeSplits = 1)
#println("After 2 Node Reductions:\n", opt)
@test length(opt) == (nodeFusions = 4, nodeReductions = 0, nodeSplits = 1)
#println("After 2 Node Reductions:\n", opt)
pop_operation!(graph)
pop_operation!(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After reverting the second Node Reduction:\n", opt)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After reverting the second Node Reduction:\n", opt)
reset_graph!(graph)
reset_graph!(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("After reverting to the initial state:\n", opt)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("After reverting to the initial state:\n", opt)
@test is_valid(graph)
end
println("Node Reduction Unit Tests Complete!")
@test is_valid(graph)

View File

@ -1,14 +1,41 @@
using MetagraphOptimization
using Test
using SafeTestsets
@testset "MetagraphOptimization Tests" begin
@safetestset "Utility Unit Tests " begin
include("unit_tests_utility.jl")
end
@safetestset "Task Unit Tests " begin
include("unit_tests_tasks.jl")
end
@safetestset "Node Unit Tests " begin
include("unit_tests_nodes.jl")
end
@safetestset "Properties Unit Tests " begin
include("unit_tests_properties.jl")
end
@safetestset "Estimation Unit Tests " begin
include("unit_tests_estimator.jl")
end
@safetestset "ABC-Model Unit Tests " begin
include("unit_tests_abcmodel.jl")
end
@safetestset "QED Feynman Diagram Generation Tests" begin
include("unit_tests_qed_diagrams.jl")
end
@safetestset "QED-Model Unit Tests " begin
include("unit_tests_qedmodel.jl")
end
@safetestset "Node Reduction Unit Tests " begin
include("node_reduction.jl")
end
@safetestset "Graph Unit Tests " begin
include("unit_tests_graph.jl")
end
@safetestset "Execution Unit Tests " begin
include("unit_tests_execution.jl")
end
@safetestset "Optimization Unit Tests " begin
include("unit_tests_optimization.jl")
end
@safetestset "Known Graph Tests " begin
include("known_graphs.jl")
end

View File

@ -0,0 +1,23 @@
using MetagraphOptimization
using QEDbase
import MetagraphOptimization.interaction_result
def_momentum = SFourMomentum(1.0, 0.0, 0.0, 0.0)
testparticleTypes = [ParticleA, ParticleB, ParticleC]
testparticles = [ParticleA(def_momentum), ParticleB(def_momentum), ParticleC(def_momentum)]
@testset "Interaction Result" begin
for p1 in testparticleTypes, p2 in testparticleTypes
if (p1 == p2)
@test_throws AssertionError interaction_result(p1, p2)
else
@test interaction_result(p1, p2) == setdiff(testparticleTypes, [p1, p2])[1]
end
end
end
@testset "Vertex" begin
@test isapprox(MetagraphOptimization.ABC_vertex(), 1 / 137.0)
end

View File

@ -0,0 +1,91 @@
using MetagraphOptimization
function test_op_specific(estimator, graph, nf::NodeFusion)
estimate = operation_effect(estimator, graph, nf)
data_reduce = data(nf.input[2].task)
@test isapprox(estimate.data, -data_reduce)
@test isapprox(estimate.computeEffort, 0; atol = eps(Float64))
@test isapprox(estimate.computeIntensity, 0; atol = eps(Float64))
return nothing
end
function test_op_specific(estimator, graph, nr::NodeReduction)
estimate = operation_effect(estimator, graph, nr)
data_reduce = data(nr.input[1].task) * (length(nr.input) - 1)
compute_effort_reduce = compute_effort(nr.input[1].task) * (length(nr.input) - 1)
@test isapprox(estimate.data, -data_reduce; atol = eps(Float64))
@test isapprox(estimate.computeEffort, -compute_effort_reduce)
@test isapprox(estimate.computeIntensity, compute_effort_reduce / data_reduce)
return nothing
end
function test_op_specific(estimator, graph, ns::NodeSplit)
estimate = operation_effect(estimator, graph, ns)
copies = length(ns.input.parents) - 1
data_increase = data(ns.input.task) * copies
compute_effort_increase = compute_effort(ns.input.task) * copies
@test isapprox(estimate.data, data_increase; atol = eps(Float64))
@test isapprox(estimate.computeEffort, compute_effort_increase)
@test isapprox(estimate.computeIntensity, compute_effort_increase / data_increase)
return nothing
end
function test_op(estimator, graph, op)
estimate_before = graph_cost(estimator, graph)
estimate = operation_effect(estimator, graph, op)
push_operation!(graph, op)
estimate_after_apply = graph_cost(estimator, graph)
reset_graph!(graph)
@test isapprox((estimate_before + estimate).data, estimate_after_apply.data)
@test isapprox((estimate_before + estimate).computeEffort, estimate_after_apply.computeEffort)
@test isapprox((estimate_before + estimate).computeIntensity, estimate_after_apply.computeIntensity)
test_op_specific(estimator, graph, op)
return nothing
end
@testset "Global Metric Estimator" for (graph_string, exp_data, exp_computeEffort) in
zip(["AB->AB", "AB->ABBB"], [976, 10944], [53, 1075])
estimator = GlobalMetricEstimator()
@test cost_type(estimator) == CDCost
graph = parse_dag(joinpath(@__DIR__, "..", "input", "$(graph_string).txt"), ABCModel())
@testset "Graph Cost" begin
estimate = graph_cost(estimator, graph)
@test estimate.data == exp_data
@test estimate.computeEffort == exp_computeEffort
@test isapprox(estimate.computeIntensity, exp_computeEffort / exp_data)
end
@testset "Operation Cost" begin
ops = get_operations(graph)
nfs = copy(ops.nodeFusions)
nrs = copy(ops.nodeReductions)
nss = copy(ops.nodeSplits)
for nf in nfs
test_op(estimator, graph, nf)
end
for nr in nrs
test_op(estimator, graph, nr)
end
for ns in nss
test_op(estimator, graph, ns)
end
end
end

View File

@ -1,92 +1,135 @@
import MetagraphOptimization.ABCParticle
using MetagraphOptimization
using QEDbase
using AccurateArithmetic
using Random
include("../examples/profiling_utilities.jl")
import MetagraphOptimization.ABCParticle
import MetagraphOptimization.interaction_result
@testset "Unit Tests Execution" begin
machine = get_machine_info()
const RTOL = sqrt(eps(Float64))
RNG = Random.default_rng()
process_2_2 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
)
function check_particle_reverse_moment(p1::SFourMomentum, p2::SFourMomentum)
@test isapprox(abs(p1.E), abs(p2.E))
@test isapprox(p1.px, -p2.px)
@test isapprox(p1.py, -p2.py)
@test isapprox(p1.pz, -p2.pz)
return nothing
end
particles_2_2 = ABCProcessInput(
process_2_2,
ABCParticle[
ParticleA(SFourMomentum(0.823648, 0.0, 0.0, 0.823648)),
ParticleB(SFourMomentum(0.823648, 0.0, 0.0, -0.823648)),
],
ABCParticle[
ParticleA(SFourMomentum(0.823648, -0.835061, -0.474802, 0.277915)),
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
],
)
expected_result = 0.00013916495566048735
function ground_truth_graph_result(input::ABCProcessInput)
# formula for one diagram:
# u_Bp * iλ * u_Ap * S_C * u_B * iλ * u_A
# for the second diagram:
# u_B * iλ * u_Ap * S_C * u_Bp * iλ * u_Ap
# the "u"s are all 1, we ignore the i, λ is 1/137.
@testset "AB->AB no optimization" begin
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
constant = (1 / 137.0)^2
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
# calculate particle C in diagram 1
diagram1_C = ParticleC(input.inParticles[1].momentum + input.inParticles[2].momentum)
diagram2_C = ParticleC(input.inParticles[1].momentum + input.outParticles[2].momentum)
func = get_compute_function(graph, process_2_2, machine)
@test isapprox(func(particles_2_2), expected_result; rtol = 0.001)
end
diagram1_Cp = ParticleC(input.outParticles[1].momentum + input.outParticles[2].momentum)
diagram2_Cp = ParticleC(input.outParticles[1].momentum + input.inParticles[2].momentum)
check_particle_reverse_moment(diagram1_Cp.momentum, diagram1_C.momentum)
check_particle_reverse_moment(diagram2_Cp.momentum, diagram2_C.momentum)
@test isapprox(getMass2(diagram1_C.momentum), getMass2(diagram1_Cp.momentum))
@test isapprox(getMass2(diagram2_C.momentum), getMass2(diagram2_Cp.momentum))
inner1 = MetagraphOptimization.ABC_inner_edge(diagram1_C)
inner2 = MetagraphOptimization.ABC_inner_edge(diagram2_C)
diagram1_result = inner1 * constant
diagram2_result = inner2 * constant
return sum_kbn([diagram1_result, diagram2_result])
end
machine = get_machine_info()
process_2_2 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
)
particles_2_2 = ABCProcessInput(
process_2_2,
ABCParticle[
ParticleA(SFourMomentum(0.823648, 0.0, 0.0, 0.823648)),
ParticleB(SFourMomentum(0.823648, 0.0, 0.0, -0.823648)),
],
ABCParticle[
ParticleA(SFourMomentum(0.823648, -0.835061, -0.474802, 0.277915)),
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
],
)
expected_result = ground_truth_graph_result(particles_2_2)
@testset "AB->AB no optimization" begin
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
func = get_compute_function(graph, process_2_2, machine)
@test isapprox(func(particles_2_2), expected_result; rtol = RTOL)
end
end
@testset "AB->AB after random walk" begin
for i in 1:1000
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
random_walk!(graph, 50)
@testset "AB->AB after random walk" begin
for i in 1:200
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
optimize!(RandomWalkOptimizer(RNG), graph, 50)
@test is_valid(graph)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
end
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
end
end
process_2_4 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 3),
)
particles_2_4 = gen_process_input(process_2_4)
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
expected_result = execute(graph, process_2_4, machine, particles_2_4)
process_2_4 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 3),
)
particles_2_4 = gen_process_input(process_2_4)
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
expected_result = execute(graph, process_2_4, machine, particles_2_4)
@testset "AB->ABBB no optimization" begin
for _ in 1:5 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
@testset "AB->ABBB no optimization" begin
for _ in 1:5 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
func = get_compute_function(graph, process_2_4, machine)
@test isapprox(func(particles_2_4), expected_result; rtol = 0.001)
end
func = get_compute_function(graph, process_2_4, machine)
@test isapprox(func(particles_2_4), expected_result; rtol = RTOL)
end
end
@testset "AB->ABBB after random walk" begin
for i in 1:200
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
random_walk!(graph, 100)
@test is_valid(graph)
@testset "AB->ABBB after random walk" begin
for i in 1:50
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
optimize!(RandomWalkOptimizer(RNG), graph, 100)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
end
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
end
end
@testset "AB->AB large sum fusion" for _ in 1:20
@testset "AB->AB large sum fusion" begin
for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
if isa(fusion.input[3].task, ComputeTaskABC_Sum)
push_operation!(graph, fusion)
break
end
@ -105,18 +148,20 @@ include("../examples/profiling_utilities.jl")
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
end
@testset "AB->AB large sum fusion" for _ in 1:20
@testset "AB->AB large sum fusion" begin
for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
if isa(fusion.input[3].task, ComputeTaskABC_Sum)
push_operation!(graph, fusion)
break
end
@ -135,18 +180,20 @@ include("../examples/profiling_utilities.jl")
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
end
@testset "AB->AB fusion edge case" for _ in 1:20
@testset "AB->AB fusion edge case" begin
for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push two fusions with ComputeTaskV
# push two fusions with ComputeTaskABC_V
for _ in 1:2
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, ComputeTaskV)
if isa(fusion.input[1].task, ComputeTaskABC_V)
push_operation!(graph, fusion)
break
end
@ -169,9 +216,7 @@ include("../examples/profiling_utilities.jl")
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
end
println("Execution Unit Tests Complete!")

View File

@ -1,212 +1,213 @@
using MetagraphOptimization
import MetagraphOptimization.insert_node!
import MetagraphOptimization.insert_edge!
import MetagraphOptimization.make_node
import MetagraphOptimization.siblings
import MetagraphOptimization.partners
@testset "Unit Tests Graph" begin
graph = MetagraphOptimization.DAG()
graph = MetagraphOptimization.DAG()
@test length(graph.nodes) == 0
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.nodes) == 0
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
@test length(graph.nodes) == 1
@test length(graph.dirtyNodes) == 1
@test length(graph.nodes) == 1
@test length(graph.dirtyNodes) == 1
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskABC_S2()), track = false)
@test length(graph.nodes) == 2
@test length(graph.dirtyNodes) == 2
@test length(graph.nodes) == 2
@test length(graph.dirtyNodes) == 2
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskABC_V()), track = false)
# data from uB, uA, uBp and uAp to v0 and v1
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
# data from uB, uA, uBp and uAp to v0 and v1
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
# uB, uA, uBp and uAp computes
uB = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uA = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uBp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uAp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
# uB, uA, uBp and uAp computes
uB = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
uA = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
uBp = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
uAp = insert_node!(graph, make_node(ComputeTaskABC_U()), track = false)
# data from PB, PA, PBp and PAp to uB, uA, uBp and uAp
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), track = false)
# data from PB, PA, PBp and PAp to uB, uA, uBp and uAp
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), track = false)
# P computes PB, PA, PBp and PAp
PB = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PA = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PBp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PAp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
# P computes PB, PA, PBp and PAp
PB = insert_node!(graph, make_node(ComputeTaskABC_P()), track = false)
PA = insert_node!(graph, make_node(ComputeTaskABC_P()), track = false)
PBp = insert_node!(graph, make_node(ComputeTaskABC_P()), track = false)
PAp = insert_node!(graph, make_node(ComputeTaskABC_P()), track = false)
# entry nodes getting data for P computes
d_PB = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PA = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), track = false)
# entry nodes getting data for P computes
d_PB = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PA = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), track = false)
@test length(graph.nodes) == 26
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.dirtyNodes) == 26
# now for all the edges
insert_edge!(graph, d_PB, PB, track = false)
insert_edge!(graph, d_PA, PA, track = false)
insert_edge!(graph, d_PBp, PBp, track = false)
insert_edge!(graph, d_PAp, PAp, track = false)
# now for all the edges
insert_edge!(graph, d_PB, PB, track = false)
insert_edge!(graph, d_PA, PA, track = false)
insert_edge!(graph, d_PBp, PBp, track = false)
insert_edge!(graph, d_PAp, PAp, track = false)
insert_edge!(graph, PB, d_PB_uB, track = false)
insert_edge!(graph, PA, d_PA_uA, track = false)
insert_edge!(graph, PBp, d_PBp_uBp, track = false)
insert_edge!(graph, PAp, d_PAp_uAp, track = false)
insert_edge!(graph, PB, d_PB_uB, track = false)
insert_edge!(graph, PA, d_PA_uA, track = false)
insert_edge!(graph, PBp, d_PBp_uBp, track = false)
insert_edge!(graph, PAp, d_PAp_uAp, track = false)
insert_edge!(graph, d_PB_uB, uB, track = false)
insert_edge!(graph, d_PA_uA, uA, track = false)
insert_edge!(graph, d_PBp_uBp, uBp, track = false)
insert_edge!(graph, d_PAp_uAp, uAp, track = false)
insert_edge!(graph, d_PB_uB, uB, track = false)
insert_edge!(graph, d_PA_uA, uA, track = false)
insert_edge!(graph, d_PBp_uBp, uBp, track = false)
insert_edge!(graph, d_PAp_uAp, uAp, track = false)
insert_edge!(graph, uB, d_uB_v0, track = false)
insert_edge!(graph, uA, d_uA_v0, track = false)
insert_edge!(graph, uBp, d_uBp_v1, track = false)
insert_edge!(graph, uAp, d_uAp_v1, track = false)
insert_edge!(graph, uB, d_uB_v0, track = false)
insert_edge!(graph, uA, d_uA_v0, track = false)
insert_edge!(graph, uBp, d_uBp_v1, track = false)
insert_edge!(graph, uAp, d_uAp_v1, track = false)
insert_edge!(graph, d_uB_v0, v0, track = false)
insert_edge!(graph, d_uA_v0, v0, track = false)
insert_edge!(graph, d_uBp_v1, v1, track = false)
insert_edge!(graph, d_uAp_v1, v1, track = false)
insert_edge!(graph, d_uB_v0, v0, track = false)
insert_edge!(graph, d_uA_v0, v0, track = false)
insert_edge!(graph, d_uBp_v1, v1, track = false)
insert_edge!(graph, d_uAp_v1, v1, track = false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, s0, d_exit, track = false)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 26
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 26
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test is_valid(graph)
@test is_valid(graph)
@test is_entry_node(d_PB)
@test is_entry_node(d_PA)
@test is_entry_node(d_PBp)
@test is_entry_node(d_PBp)
@test !is_entry_node(PB)
@test !is_entry_node(v0)
@test !is_entry_node(d_exit)
@test is_entry_node(d_PB)
@test is_entry_node(d_PA)
@test is_entry_node(d_PBp)
@test is_entry_node(d_PBp)
@test !is_entry_node(PB)
@test !is_entry_node(v0)
@test !is_entry_node(d_exit)
@test is_exit_node(d_exit)
@test !is_exit_node(d_uB_v0)
@test !is_exit_node(v0)
@test is_exit_node(d_exit)
@test !is_exit_node(d_uB_v0)
@test !is_exit_node(v0)
@test length(children(v0)) == 2
@test length(children(v1)) == 2
@test length(parents(v0)) == 1
@test length(parents(v1)) == 1
@test length(children(v0)) == 2
@test length(children(v1)) == 2
@test length(parents(v0)) == 1
@test length(parents(v1)) == 1
@test MetagraphOptimization.get_exit_node(graph) == d_exit
@test MetagraphOptimization.get_exit_node(graph) == d_exit
@test length(partners(s0)) == 1
@test length(siblings(s0)) == 1
@test length(partners(s0)) == 1
@test length(siblings(s0)) == 1
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test operations == get_operations(graph)
nf = first(operations.nodeFusions)
@test sum(length(operations)) == 10
properties = get_properties(graph)
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
@test properties.noNodes == 26
@test properties.noEdges == 25
@test operations == get_operations(graph)
nf = first(operations.nodeFusions)
push_operation!(graph, nf)
# **does not immediately apply the operation**
properties = get_properties(graph)
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
@test properties.noNodes == 26
@test properties.noEdges == 25
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 1
@test first(graph.operationsToApply) == nf
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
push_operation!(graph, nf)
# **does not immediately apply the operation**
# this applies pending operations
properties = get_properties(graph)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 1
@test first(graph.operationsToApply) == nf
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.nodes) == 24
@test length(graph.appliedOperations) == 1
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) != 0
@test properties.noNodes == 24
@test properties.noEdges == 23
@test properties.computeEffort == 28
@test properties.data < 62
@test properties.computeIntensity > 28 / 62
# this applies pending operations
properties = get_properties(graph)
operations = get_operations(graph)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 24
@test length(graph.appliedOperations) == 1
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) != 0
@test properties.noNodes == 24
@test properties.noEdges == 23
@test properties.computeEffort == 28
@test properties.data < 62
@test properties.computeIntensity > 28 / 62
@test length(operations) == (nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test !isempty(operations)
operations = get_operations(graph)
@test length(graph.dirtyNodes) == 0
possibleNF = 9
while !isempty(operations.nodeFusions)
push_operation!(graph, first(operations.nodeFusions))
operations = get_operations(graph)
possibleNF = possibleNF - 1
@test length(operations) == (nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
end
@test length(operations) == (nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test !isempty(operations)
@test isempty(operations)
@test length(operations) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 6
@test length(graph.appliedOperations) == 10
@test length(graph.operationsToApply) == 0
reset_graph!(graph)
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
properties = get_properties(graph)
@test properties.noNodes == 26
@test properties.noEdges == 25
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test is_valid(graph)
possibleNF = 9
while !isempty(operations.nodeFusions)
push_operation!(graph, first(operations.nodeFusions))
global operations = get_operations(graph)
global possibleNF = possibleNF - 1
@test length(operations) == (nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
end
println("Graph Unit Tests Complete!")
@test isempty(operations)
@test length(operations) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 6
@test length(graph.appliedOperations) == 10
@test length(graph.operationsToApply) == 0
reset_graph!(graph)
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
properties = get_properties(graph)
@test properties.noNodes == 26
@test properties.noEdges == 25
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test is_valid(graph)

View File

@ -1,36 +1,34 @@
using MetagraphOptimization
@testset "Unit Tests Nodes" begin
nC1 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskU())
nC2 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskV())
nC3 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskP())
nC4 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskSum())
nC1 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskABC_U())
nC2 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskABC_V())
nC3 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskABC_P())
nC4 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskABC_Sum())
nD1 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
nD2 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(20))
nD1 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
nD2 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(20))
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC2)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC3, nC4)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD2)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC2)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC3, nC4)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD2)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD1)
ed1 = MetagraphOptimization.make_edge(nC1, nD1)
ed2 = MetagraphOptimization.make_edge(nD1, nC2)
ed3 = MetagraphOptimization.make_edge(nC2, nD2)
ed4 = MetagraphOptimization.make_edge(nD2, nC3)
ed1 = MetagraphOptimization.make_edge(nC1, nD1)
ed2 = MetagraphOptimization.make_edge(nD1, nC2)
ed3 = MetagraphOptimization.make_edge(nC2, nD2)
ed4 = MetagraphOptimization.make_edge(nD2, nC3)
@test nC1 != nC2
@test nD1 != nD2
@test nC1 != nD1
@test nC3 != nC4
@test nC1 != nC2
@test nD1 != nD2
@test nC1 != nD1
@test nC3 != nC4
nC1_2 = copy(nC1)
@test nC1_2 != nC1
nC1_2 = copy(nC1)
@test nC1_2 != nC1
nD1_2 = copy(nD1)
@test nD1_2 != nD1
nD1_2 = copy(nD1)
@test nD1_2 != nD1
nD1_c = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
@test nD1_c != nD1
end
println("Node Unit Tests Complete!")
nD1_c = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
@test nD1_c != nD1

View File

@ -0,0 +1,40 @@
using MetagraphOptimization
using Random
RNG = Random.default_rng()
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
# create the optimizers
FIXPOINT_OPTIMIZERS = [GreedyOptimizer(GlobalMetricEstimator()), ReductionOptimizer()]
NO_FIXPOINT_OPTIMIZERS = [RandomWalkOptimizer(RNG)]
@testset "Optimizer $optimizer" for optimizer in vcat(NO_FIXPOINT_OPTIMIZERS, FIXPOINT_OPTIMIZERS)
@test operation_stack_length(graph) == 0
@test optimize_step!(optimizer, graph)
@test !fixpoint_reached(optimizer, graph)
@test operation_stack_length(graph) == 1
@test optimize!(optimizer, graph, 10)
@test !fixpoint_reached(optimizer, graph)
reset_graph!(graph)
end
@testset "Fixpoint optimizer $optimizer" for optimizer in FIXPOINT_OPTIMIZERS
@test operation_stack_length(graph) == 0
optimize_to_fixpoint!(optimizer, graph)
@test fixpoint_reached(optimizer, graph)
@test !optimize_step!(optimizer, graph)
@test !optimize!(optimizer, graph, 10)
reset_graph!(graph)
end
@testset "No fixpoint optimizer $optimizer" for optimizer in NO_FIXPOINT_OPTIMIZERS
@test_throws MethodError optimize_to_fixpoint!(optimizer, graph)
end

View File

@ -1,52 +1,33 @@
using MetagraphOptimization
@testset "GraphProperties Unit Tests" begin
prop = GraphProperties()
prop = GraphProperties()
@test prop.data == 0.0
@test prop.computeEffort == 0.0
@test prop.computeIntensity == 0.0
@test prop.cost == 0.0
@test prop.noNodes == 0.0
@test prop.noEdges == 0.0
@test prop.data == 0.0
@test prop.computeEffort == 0.0
@test prop.computeIntensity == 0.0
@test prop.noNodes == 0.0
@test prop.noEdges == 0.0
prop2 = (
data = 5.0,
computeEffort = 6.0,
computeIntensity = 6.0 / 5.0,
cost = 0.0,
noNodes = 2,
noEdges = 3,
)::GraphProperties
prop2 = (data = 5.0, computeEffort = 6.0, computeIntensity = 6.0 / 5.0, noNodes = 2, noEdges = 3)::GraphProperties
@test prop + prop2 == prop2
@test prop2 - prop == prop2
@test prop + prop2 == prop2
@test prop2 - prop == prop2
negProp = -prop2
@test negProp.data == -5.0
@test negProp.computeEffort == -6.0
@test negProp.computeIntensity == 6.0 / 5.0
@test negProp.cost == 0.0
@test negProp.noNodes == -2
@test negProp.noEdges == -3
negProp = -prop2
@test negProp.data == -5.0
@test negProp.computeEffort == -6.0
@test negProp.computeIntensity == 6.0 / 5.0
@test negProp.noNodes == -2
@test negProp.noEdges == -3
@test negProp + prop2 == GraphProperties()
@test negProp + prop2 == GraphProperties()
prop3 = (
data = 7.0,
computeEffort = 3.0,
computeIntensity = 7.0 / 3.0,
cost = 0.0,
noNodes = -3,
noEdges = 2,
)::GraphProperties
prop3 = (data = 7.0, computeEffort = 3.0, computeIntensity = 7.0 / 3.0, noNodes = -3, noEdges = 2)::GraphProperties
propSum = prop2 + prop3
propSum = prop2 + prop3
@test propSum.data == 12.0
@test propSum.computeEffort == 9.0
@test propSum.computeIntensity == 9.0 / 12.0
@test propSum.cost == 0.0
@test propSum.noNodes == -1
@test propSum.noEdges == 5
end
println("GraphProperties Unit Tests Complete!")
@test propSum.data == 12.0
@test propSum.computeEffort == 9.0
@test propSum.computeIntensity == 9.0 / 12.0
@test propSum.noNodes == -1
@test propSum.noEdges == 5

View File

@ -0,0 +1,47 @@
using MetagraphOptimization
import MetagraphOptimization.gen_diagrams
import MetagraphOptimization.isincoming
import MetagraphOptimization.types
model = QEDModel()
compton = ("Compton Scattering", parse_process("ke->ke", model), 2)
compton_3 = ("3-Photon Compton Scattering", parse_process("kkke->ke", QEDModel()), 24)
compton_4 = ("4-Photon Compton Scattering", parse_process("kkkke->ke", QEDModel()), 120)
bhabha = ("Bhabha Scattering", parse_process("ep->ep", model), 2)
moller = ("Møller Scattering", parse_process("ee->ee", model), 2)
pair_production = ("Pair production", parse_process("kk->ep", model), 2)
pair_annihilation = ("Pair annihilation", parse_process("ep->kk", model), 2)
trident = ("Trident", parse_process("ke->epe", model), 8)
@testset "Known Processes" begin
@testset "$name" for (name, process, n) in
[compton, bhabha, moller, pair_production, pair_annihilation, trident, compton_3, compton_4]
initial_diagram = FeynmanDiagram(process)
n_particles = 0
for type in types(model)
if (isincoming(type))
n_particles += get(process.inParticles, type, 0)
else
n_particles += get(process.outParticles, type, 0)
end
end
@test n_particles == length(initial_diagram.particles)
@test ismissing(initial_diagram.tie[])
@test isempty(initial_diagram.vertices)
result_diagrams = gen_diagrams(initial_diagram)
@test length(result_diagrams) == n
for d in result_diagrams
n_vertices = 0
for vs in d.vertices
n_vertices += length(vs)
end
@test n_vertices == n_particles - 2
@test !ismissing(d.tie[])
end
end
end

291
test/unit_tests_qedmodel.jl Normal file
View File

@ -0,0 +1,291 @@
using MetagraphOptimization
using QEDbase
using QEDprocesses
using StatsBase # for countmap
using Random
import MetagraphOptimization.caninteract
import MetagraphOptimization.issame
import MetagraphOptimization.interaction_result
import MetagraphOptimization.propagation_result
import MetagraphOptimization.direction
import MetagraphOptimization.spin_or_pol
import MetagraphOptimization.QED_vertex
def_momentum = SFourMomentum(1.0, 0.0, 0.0, 0.0)
RNG = Random.default_rng()
testparticleTypes = [
PhotonStateful{Incoming},
PhotonStateful{Outgoing},
FermionStateful{Incoming},
FermionStateful{Outgoing},
AntiFermionStateful{Incoming},
AntiFermionStateful{Outgoing},
]
testparticleTypesPropagated = [
PhotonStateful{Outgoing},
PhotonStateful{Incoming},
FermionStateful{Outgoing},
FermionStateful{Incoming},
AntiFermionStateful{Outgoing},
AntiFermionStateful{Incoming},
]
function compton_groundtruth(input::QEDProcessInput)
# p1k1 -> p2k2
# formula: (ie)^2 (u(p2) slashed(ε1) S(p2 k1) slashed(ε2) u(p1) + u(p2) slashed(ε2) S(p1 + k1) slashed(ε1) u(p1))
p1 = input.inParticles[findfirst(x -> typeof(x) <: FermionStateful, input.inParticles)]
p2 = input.outParticles[findfirst(x -> typeof(x) <: FermionStateful, input.outParticles)]
k1 = input.inParticles[findfirst(x -> typeof(x) <: PhotonStateful, input.inParticles)]
k2 = input.outParticles[findfirst(x -> typeof(x) <: PhotonStateful, input.outParticles)]
u_p1 = base_state(Electron(), Incoming(), p1.momentum, spin_or_pol(p1))
u_p2 = base_state(Electron(), Outgoing(), p2.momentum, spin_or_pol(p2))
eps_1 = base_state(Photon(), Incoming(), k1.momentum, spin_or_pol(k1))
eps_2 = base_state(Photon(), Outgoing(), k2.momentum, spin_or_pol(k2))
virt1_mom = p2.momentum - k1.momentum
@test isapprox(p1.momentum - k2.momentum, virt1_mom)
virt2_mom = p1.momentum + k1.momentum
@test isapprox(p2.momentum + k2.momentum, virt2_mom)
s_p2_k1 = propagator(Electron(), virt1_mom)
s_p1_k1 = propagator(Electron(), virt2_mom)
diagram1 = u_p2 * (eps_1 * QED_vertex()) * s_p2_k1 * (eps_2 * QED_vertex()) * u_p1
diagram2 = u_p2 * (eps_2 * QED_vertex()) * s_p1_k1 * (eps_1 * QED_vertex()) * u_p1
return diagram1 + diagram2
end
@testset "Interaction Result" begin
import MetagraphOptimization.QED_conserve_momentum
for p1 in testparticleTypes, p2 in testparticleTypes
if !caninteract(p1, p2)
@test_throws AssertionError interaction_result(p1, p2)
continue
end
@test interaction_result(p1, p2) in setdiff(testparticleTypes, [p1, p2])
@test issame(interaction_result(p1, p2), interaction_result(p2, p1))
testParticle1 = p1(rand(RNG, SFourMomentum))
testParticle2 = p2(rand(RNG, SFourMomentum))
p3 = interaction_result(p1, p2)
resultParticle = QED_conserve_momentum(testParticle1, testParticle2)
@test issame(typeof(resultParticle), interaction_result(p1, p2))
totalMom = zero(SFourMomentum)
for (p, mom) in [(p1, testParticle1.momentum), (p2, testParticle2.momentum), (p3, resultParticle.momentum)]
if (typeof(direction(p)) <: Incoming)
totalMom += mom
else
totalMom -= mom
end
end
@test isapprox(totalMom, zero(SFourMomentum); atol = sqrt(eps()))
end
end
@testset "Propagation Result" begin
for (p, propResult) in zip(testparticleTypes, testparticleTypesPropagated)
@test issame(propagation_result(p), propResult)
@test direction(propagation_result(p)(def_momentum)) != direction(p(def_momentum))
end
end
@testset "Parse Process" begin
@testset "Order invariance" begin
@test parse_process("ke->ke", QEDModel()) == parse_process("ek->ke", QEDModel())
@test parse_process("ke->ke", QEDModel()) == parse_process("ek->ek", QEDModel())
@test parse_process("ke->ke", QEDModel()) == parse_process("ke->ek", QEDModel())
@test parse_process("kkke->eep", QEDModel()) == parse_process("kkek->epe", QEDModel())
end
@testset "Known processes" begin
compton_process = QEDProcessDescription(
Dict{Type, Int}(PhotonStateful{Incoming} => 1, FermionStateful{Incoming} => 1),
Dict{Type, Int}(PhotonStateful{Outgoing} => 1, FermionStateful{Outgoing} => 1),
)
@test parse_process("ke->ke", QEDModel()) == compton_process
positron_compton_process = QEDProcessDescription(
Dict{Type, Int}(PhotonStateful{Incoming} => 1, AntiFermionStateful{Incoming} => 1),
Dict{Type, Int}(PhotonStateful{Outgoing} => 1, AntiFermionStateful{Outgoing} => 1),
)
@test parse_process("kp->kp", QEDModel()) == positron_compton_process
trident_process = QEDProcessDescription(
Dict{Type, Int}(PhotonStateful{Incoming} => 1, FermionStateful{Incoming} => 1),
Dict{Type, Int}(FermionStateful{Outgoing} => 2, AntiFermionStateful{Outgoing} => 1),
)
@test parse_process("ke->eep", QEDModel()) == trident_process
pair_production_process = QEDProcessDescription(
Dict{Type, Int}(PhotonStateful{Incoming} => 2),
Dict{Type, Int}(FermionStateful{Outgoing} => 1, AntiFermionStateful{Outgoing} => 1),
)
@test parse_process("kk->pe", QEDModel()) == pair_production_process
pair_annihilation_process = QEDProcessDescription(
Dict{Type, Int}(FermionStateful{Incoming} => 1, AntiFermionStateful{Incoming} => 1),
Dict{Type, Int}(PhotonStateful{Outgoing} => 2),
)
@test parse_process("pe->kk", QEDModel()) == pair_annihilation_process
end
end
@testset "Generate Process Inputs" begin
@testset "Process $proc_str" for proc_str in ["ke->ke", "kp->kp", "kk->ep", "ep->kk"]
# currently can only generate for 2->2 processes
process = parse_process(proc_str, QEDModel())
for i in 1:100
input = gen_process_input(process)
@test countmap(typeof.(input.inParticles)) == process.inParticles
@test countmap(typeof.(input.outParticles)) == process.outParticles
@test isapprox(
sum(getfield.(input.inParticles, :momentum)),
sum(getfield.(input.outParticles, :momentum));
atol = sqrt(eps()),
)
end
end
end
@testset "Compton" begin
import MetagraphOptimization.insert_node!
import MetagraphOptimization.insert_edge!
import MetagraphOptimization.make_node
model = QEDModel()
process = parse_process("ke->ke", model)
machine = get_machine_info()
graph = MetagraphOptimization.DAG()
# manually build a graph for compton
graph = DAG()
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(16)), track = false)
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(2)), track = false)
d_s0_sum = insert_node!(graph, make_node(DataTask(16)), track = false)
d_s1_sum = insert_node!(graph, make_node(DataTask(16)), track = false)
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false)
s1 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false)
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v2_s1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v3_s1 = insert_node!(graph, make_node(DataTask(96)), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v2 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v3 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
# data from uPhIn, uPhOut, uElIn, uElOut to v0 and v1
d_uPhIn_v0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElIn_v0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhOut_v1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElOut_v1 = insert_node!(graph, make_node(DataTask(96)), track = false)
# data from uPhIn, uPhOut, uElIn, uElOut to v2 and v3
d_uPhOut_v2 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElIn_v2 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhIn_v3 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElOut_v3 = insert_node!(graph, make_node(DataTask(96)), track = false)
# uPhIn, uPhOut, uElIn and uElOut computes
uPhIn = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uPhOut = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uElIn = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uElOut = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
# data into U
d_uPhIn = insert_node!(graph, make_node(DataTask(16), "ki1"), track = false)
d_uPhOut = insert_node!(graph, make_node(DataTask(16), "ko1"), track = false)
d_uElIn = insert_node!(graph, make_node(DataTask(16), "ei1"), track = false)
d_uElOut = insert_node!(graph, make_node(DataTask(16), "eo1"), track = false)
# now for all the edges
insert_edge!(graph, d_uPhIn, uPhIn, track = false)
insert_edge!(graph, d_uPhOut, uPhOut, track = false)
insert_edge!(graph, d_uElIn, uElIn, track = false)
insert_edge!(graph, d_uElOut, uElOut, track = false)
insert_edge!(graph, uPhIn, d_uPhIn_v0, track = false)
insert_edge!(graph, uPhOut, d_uPhOut_v1, track = false)
insert_edge!(graph, uElIn, d_uElIn_v0, track = false)
insert_edge!(graph, uElOut, d_uElOut_v1, track = false)
insert_edge!(graph, uPhIn, d_uPhIn_v3, track = false)
insert_edge!(graph, uPhOut, d_uPhOut_v2, track = false)
insert_edge!(graph, uElIn, d_uElIn_v2, track = false)
insert_edge!(graph, uElOut, d_uElOut_v3, track = false)
insert_edge!(graph, d_uPhIn_v0, v0, track = false)
insert_edge!(graph, d_uPhOut_v1, v1, track = false)
insert_edge!(graph, d_uElIn_v0, v0, track = false)
insert_edge!(graph, d_uElOut_v1, v1, track = false)
insert_edge!(graph, d_uPhIn_v3, v3, track = false)
insert_edge!(graph, d_uPhOut_v2, v2, track = false)
insert_edge!(graph, d_uElIn_v2, v2, track = false)
insert_edge!(graph, d_uElOut_v3, v3, track = false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, v2, d_v2_s1, track = false)
insert_edge!(graph, v3, d_v3_s1, track = false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, d_v2_s1, s1, track = false)
insert_edge!(graph, d_v3_s1, s1, track = false)
insert_edge!(graph, s0, d_s0_sum, track = false)
insert_edge!(graph, s1, d_s1_sum, track = false)
insert_edge!(graph, d_s0_sum, sum_node, track = false)
insert_edge!(graph, d_s1_sum, sum_node, track = false)
insert_edge!(graph, sum_node, d_exit, track = false)
input = [gen_process_input(process) for _ in 1:1000]
compton_function = get_compute_function(graph, process, machine)
@test isapprox(compton_function.(input), compton_groundtruth.(input))
graph_generated = gen_graph(process)
compton_function = get_compute_function(graph_generated, process, machine)
@test isapprox(compton_function.(input), compton_groundtruth.(input))
end

View File

@ -1,51 +1,49 @@
using MetagraphOptimization
@testset "Task Unit Tests" begin
S1 = MetagraphOptimization.ComputeTaskS1()
S2 = MetagraphOptimization.ComputeTaskS2()
U = MetagraphOptimization.ComputeTaskU()
V = MetagraphOptimization.ComputeTaskV()
P = MetagraphOptimization.ComputeTaskP()
Sum = MetagraphOptimization.ComputeTaskSum()
S1 = MetagraphOptimization.ComputeTaskABC_S1()
S2 = MetagraphOptimization.ComputeTaskABC_S2()
U = MetagraphOptimization.ComputeTaskABC_U()
V = MetagraphOptimization.ComputeTaskABC_V()
P = MetagraphOptimization.ComputeTaskABC_P()
Sum = MetagraphOptimization.ComputeTaskABC_Sum()
Data10 = MetagraphOptimization.DataTask(10)
Data20 = MetagraphOptimization.DataTask(20)
Data10 = MetagraphOptimization.DataTask(10)
Data20 = MetagraphOptimization.DataTask(20)
@test MetagraphOptimization.compute_effort(S1) == 11
@test MetagraphOptimization.compute_effort(S2) == 12
@test MetagraphOptimization.compute_effort(U) == 1
@test MetagraphOptimization.compute_effort(V) == 6
@test MetagraphOptimization.compute_effort(P) == 0
@test MetagraphOptimization.compute_effort(Sum) == 1
@test MetagraphOptimization.compute_effort(Data10) == 0
@test MetagraphOptimization.compute_effort(Data20) == 0
@test MetagraphOptimization.compute_effort(S1) == 11
@test MetagraphOptimization.compute_effort(S2) == 12
@test MetagraphOptimization.compute_effort(U) == 1
@test MetagraphOptimization.compute_effort(V) == 6
@test MetagraphOptimization.compute_effort(P) == 0
@test MetagraphOptimization.compute_effort(Sum) == 1
@test MetagraphOptimization.compute_effort(Data10) == 0
@test MetagraphOptimization.compute_effort(Data20) == 0
@test MetagraphOptimization.data(S1) == 0
@test MetagraphOptimization.data(S2) == 0
@test MetagraphOptimization.data(U) == 0
@test MetagraphOptimization.data(V) == 0
@test MetagraphOptimization.data(P) == 0
@test MetagraphOptimization.data(Sum) == 0
@test MetagraphOptimization.data(Data10) == 10
@test MetagraphOptimization.data(Data20) == 20
@test MetagraphOptimization.data(S1) == 0
@test MetagraphOptimization.data(S2) == 0
@test MetagraphOptimization.data(U) == 0
@test MetagraphOptimization.data(V) == 0
@test MetagraphOptimization.data(P) == 0
@test MetagraphOptimization.data(Sum) == 0
@test MetagraphOptimization.data(Data10) == 10
@test MetagraphOptimization.data(Data20) == 20
@test S1 != S2
@test Data10 != Data20
@test S1 != S2
@test Data10 != Data20
Data10_2 = MetagraphOptimization.DataTask(10)
Data10_2 = MetagraphOptimization.DataTask(10)
# two data tasks with same data are identical, their nodes need not be
@test Data10_2 == Data10
# two data tasks with same data are identical, their nodes need not be
@test Data10_2 == Data10
@test Data10 == Data10
@test S1 == S1
@test Data10 == Data10
@test S1 == S1
Data10_3 = copy(Data10)
Data10_3 = copy(Data10)
@test Data10_3 == Data10
@test Data10_3 == Data10
S1_2 = copy(S1)
S1_2 = copy(S1)
@test S1_2 == S1
@test S1 == MetagraphOptimization.ComputeTaskS1()
end
println("Task Unit Tests Complete!")
@test S1_2 == S1
@test S1 == MetagraphOptimization.ComputeTaskABC_S1()

View File

@ -1,11 +1,10 @@
using MetagraphOptimization
import MetagraphOptimization.bytes_to_human_readable
@testset "Unit Tests Utility" begin
@test MetagraphOptimization.bytes_to_human_readable(0) == "0.0 B"
@test MetagraphOptimization.bytes_to_human_readable(1020) == "1020.0 B"
@test MetagraphOptimization.bytes_to_human_readable(1025) == "1.001 KiB"
@test MetagraphOptimization.bytes_to_human_readable(684235) == "668.2 KiB"
@test MetagraphOptimization.bytes_to_human_readable(86214576) == "82.22 MiB"
@test MetagraphOptimization.bytes_to_human_readable(9241457698) == "8.607 GiB"
@test MetagraphOptimization.bytes_to_human_readable(3218598654367) == "2.927 TiB"
end
println("Utility Unit Tests Complete!")
@test bytes_to_human_readable(0) == "0.0 B"
@test bytes_to_human_readable(1020) == "1020.0 B"
@test bytes_to_human_readable(1025) == "1.001 KiB"
@test bytes_to_human_readable(684235) == "668.2 KiB"
@test bytes_to_human_readable(86214576) == "82.22 MiB"
@test bytes_to_human_readable(9241457698) == "8.607 GiB"
@test bytes_to_human_readable(3218598654367) == "2.927 TiB"