Compare commits

..

2 Commits

Author SHA1 Message Date
37e5f696a6 Use julia 1.10 in CI
Some checks failed
MetagraphOptimization_CI / test (push) Failing after 6m6s
MetagraphOptimization_CI / docs (push) Successful in 6m22s
2024-05-08 13:32:53 +02:00
a4169f1641 Add trie workaround 2024-05-08 13:27:41 +02:00
10 changed files with 26 additions and 44 deletions

View File

@ -1,10 +1,9 @@
authors = ["Anton Reinhard <anton.reinhard@proton.me>"]
name = "MetagraphOptimization"
uuid = "3e869610-d48d-4942-ba70-c1b702a33ca4"
authors = ["Anton Reinhard <anton.reinhard@proton.me>"]
version = "0.1.0"
[deps]
AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
AccurateArithmetic = "22286c92-06ac-501d-9306-4abd417d9753"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
@ -19,7 +18,6 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Roots = "f2b01f46-fcfa-551c-844a-d8ac1e96c665"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b"
[extras]
CUDA_Runtime_jll = "76a88914-d11a-5bdc-97e0-2f5a05c973a2"

View File

@ -196,8 +196,10 @@ include("devices/impl.jl")
include("devices/numa/impl.jl")
include("devices/cuda/impl.jl")
include("devices/rocm/impl.jl")
include("devices/oneapi/impl.jl")
# can currently not use AMDGPU because of incompatability with the newest rocm drivers
# include("devices/rocm/impl.jl")
# oneapi seems also broken for now
# include("devices/oneapi/impl.jl")
include("scheduler/interface.jl")
include("scheduler/greedy.jl")

View File

@ -84,13 +84,11 @@ Compute a sum over the vector. Use an algorithm that accounts for accumulated er
Linearly many FLOP with growing data.
"""
function compute(::ComputeTaskABC_Sum, data...)::Float64
return sum_kbn([data...])
#=s = 0.0im
s = 0.0im
for d in data
s += d
end
return s=#
return s
end
function compute(::ComputeTaskABC_Sum, data::AbstractArray)::Float64

View File

@ -27,6 +27,9 @@ Return a ProcessInput of randomly generated [`ABCParticle`](@ref)s from a [`ABCP
Note: This uses RAMBO to create a valid process with conservation of momentum and energy.
"""
function gen_process_input(processDescription::ABCProcessDescription)
inParticleTypes = keys(processDescription.inParticles)
outParticleTypes = keys(processDescription.outParticles)
massSum = 0
inputMasses = Vector{Float64}()
for (particle, n) in processDescription.inParticles
@ -63,7 +66,8 @@ function gen_process_input(processDescription::ABCProcessDescription)
index = 1
for (particle, n) in processDescription.outParticles
for _ in 1:n
push!(outputParticles, particle(final_momenta[index]))
mom = final_momenta[index]
push!(outputParticles, particle(SFourMomentum(-mom.E, mom.px, mom.py, mom.pz)))
index += 1
end
end

View File

@ -313,7 +313,7 @@ Return the factor of a vertex in a QED feynman diagram.
return -1im * e * gamma()
end
@inline function QED_inner_edge(p::QEDParticle)
@inline function QED_inner_edge(p::QEDParticle)::DiracMatrix
return propagator(particle(p), p.momentum)
end

View File

@ -27,8 +27,7 @@ function optimize_step!(optimizer::RandomWalkOptimizer, graph::DAG)
# push
# choose one of fuse/split/reduce
# TODO refactor fusions so they actually work
option = rand(r, 2:3)
option = rand(r, 1:3)
if option == 1 && !isempty(operations.nodeFusions)
push_operation!(graph, rand(r, collect(operations.nodeFusions)))
return true

View File

@ -1,8 +1,6 @@
using MetagraphOptimization
using Random
RNG = Random.MersenneTwister(321)
function test_known_graph(name::String, n, fusion_test = true)
@testset "Test $name Graph ($n)" begin
graph = parse_dag(joinpath(@__DIR__, "..", "input", "$name.txt"), ABCModel())
@ -11,7 +9,7 @@ function test_known_graph(name::String, n, fusion_test = true)
if (fusion_test)
test_node_fusion(graph)
end
test_random_walk(RNG, graph, n)
test_random_walk(graph, n)
end
end
@ -45,7 +43,7 @@ function test_node_fusion(g::DAG)
end
end
function test_random_walk(RNG, g::DAG, n::Int64)
function test_random_walk(g::DAG, n::Int64)
@testset "Test Random Walk ($n)" begin
# the purpose here is to do "random" operations and reverse them again and validate that the graph stays the same and doesn't diverge
reset_graph!(g)
@ -56,18 +54,18 @@ function test_random_walk(RNG, g::DAG, n::Int64)
for i in 1:n
# choose push or pop
if rand(RNG, Bool)
if rand(Bool)
# push
opt = get_operations(g)
# choose one of fuse/split/reduce
option = rand(RNG, 1:3)
option = rand(1:3)
if option == 1 && !isempty(opt.nodeFusions)
push_operation!(g, rand(RNG, collect(opt.nodeFusions)))
push_operation!(g, rand(collect(opt.nodeFusions)))
elseif option == 2 && !isempty(opt.nodeReductions)
push_operation!(g, rand(RNG, collect(opt.nodeReductions)))
push_operation!(g, rand(collect(opt.nodeReductions)))
elseif option == 3 && !isempty(opt.nodeSplits)
push_operation!(g, rand(RNG, collect(opt.nodeSplits)))
push_operation!(g, rand(collect(opt.nodeSplits)))
else
i = i - 1
end
@ -89,6 +87,8 @@ function test_random_walk(RNG, g::DAG, n::Int64)
end
end
Random.seed!(0)
test_known_graph("AB->AB", 10000)
test_known_graph("AB->ABBB", 10000)
test_known_graph("AB->ABBBBB", 1000, false)

View File

@ -9,7 +9,7 @@ import MetagraphOptimization.ABCParticle
import MetagraphOptimization.interaction_result
const RTOL = sqrt(eps(Float64))
RNG = Random.MersenneTwister(0)
RNG = Random.default_rng()
function check_particle_reverse_moment(p1::SFourMomentum, p2::SFourMomentum)
@test isapprox(abs(p1.E), abs(p2.E))
@ -123,8 +123,6 @@ expected_result = execute(graph, process_2_4, machine, particles_2_4)
end
end
#=
TODO: fix precision(?) issues
@testset "AB->ABBB after random walk" begin
for i in 1:50
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@ -134,7 +132,6 @@ TODO: fix precision(?) issues
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
end
end
=#
@testset "AB->AB large sum fusion" begin
for _ in 1:20
@ -234,19 +231,3 @@ end
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
end
@testset "$(process) after random walk" for process in ["ke->ke", "ke->kke", "ke->kkke"]
process = parse_process("ke->kkke", QEDModel())
inputs = [gen_process_input(process) for _ in 1:100]
graph = gen_graph(process)
gt = execute.(Ref(graph), Ref(process), Ref(machine), inputs)
for i in 1:50
graph = gen_graph(process)
optimize!(RandomWalkOptimizer(RNG), graph, 100)
@test is_valid(graph)
func = get_compute_function(graph, process, machine)
@test isapprox(func.(inputs), gt; rtol = RTOL)
end
end

View File

@ -1,7 +1,7 @@
using MetagraphOptimization
using Random
RNG = Random.MersenneTwister(0)
RNG = Random.default_rng()
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())

View File

@ -15,7 +15,7 @@ import MetagraphOptimization.QED_vertex
def_momentum = SFourMomentum(1.0, 0.0, 0.0, 0.0)
RNG = Random.MersenneTwister(0)
RNG = Random.default_rng()
testparticleTypes = [
PhotonStateful{Incoming, PolX},