6 Commits

Author SHA1 Message Date
12d4811d7e Install JuliaFormatter in workflow 2023-11-24 18:49:06 +01:00
8e4949d6f2 Remove prepare step 2023-11-24 18:27:30 +01:00
04d5673b44 Use SafeTestsets for testing (#22)
Fixes issue #18

Reviewed-on: Rubydragon/MetagraphOptimization.jl#22
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-22 16:01:17 +01:00
b7560685d4 Optimizer interface and sample implementation (#19)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#19
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-22 13:51:54 +01:00
16274919e4 Cost Estimation interface (#14)
See issue #13

Reviewed-on: Rubydragon/MetagraphOptimization.jl#14
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-17 01:31:31 +01:00
2709eeb3dc Fix the types, add some profiling examples (#15)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#15
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-11-13 12:55:02 +01:00
65 changed files with 1957 additions and 1404 deletions

View File

@ -7,65 +7,8 @@ env:
JULIA_DEPOT_PATH: './.julia'
jobs:
prepare:
runs-on: arch-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Setup Julia environment
uses: https://github.com/julia-actions/setup-julia@v1.9.2
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore Cache
uses: actions/cache/restore@v3
id: cache-restore
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Check cache hit
if: steps.cache-restore.outputs.cache-hit == 'true'
run: exit 0
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Cache Julia packages
uses: actions/cache/save@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
test:
needs: prepare
runs-on: arch-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
@ -78,33 +21,8 @@ jobs:
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore cached Julia packages
uses: actions/cache/restore@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Instantiate
run: julia --project=./ -e 'using Pkg; Pkg.instantiate()'
- name: Format check
run: |
@ -120,14 +38,15 @@ jobs:
end'
- name: Run tests
run: julia --project=./ -t 4 -e 'import Pkg; Pkg.test()' -O0
run: julia --project=./ -t 4 -e 'using Pkg; Pkg.test()' -O0
- name: Run examples
run: julia --project=examples/ -t 4 -e 'include("examples/import_bench.jl")' -O3
run: |
julia --project=examples/ -e 'using Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -t 4 -e 'include("examples/import_bench.jl")' -O3
docs:
needs: prepare
runs-on: arch-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
@ -140,36 +59,10 @@ jobs:
with:
version: '1.9.2'
# needed for the file hashing, should be removed when ${{ hashFiles('**/Project.toml') }} is supported in gitea
- name: Setup go environment
uses: actions/setup-go@v3
with:
go-version: '1.20'
- name: Hash files
uses: https://gitea.com/actions/go-hashfiles@v0.0.1
id: get-hash
with:
patterns: |-
**/Project.toml
- name: Restore cached Julia packages
uses: actions/cache/restore@v3
with:
path: |
.julia/artifacts
.julia/packages
.julia/registries
key: julia-${{ steps.get-hash.outputs.hash }}
- name: Install dependencies
run: |
julia --project=./ -e 'import Pkg; Pkg.instantiate(); Pkg.precompile()'
julia --project=examples/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ -e 'import Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
- name: Build docs
run: julia --project=docs/ docs/make.jl
run: |
julia --project=docs/ -e 'using Pkg; Pkg.develop(Pkg.PackageSpec(path=pwd())); Pkg.instantiate(); Pkg.precompile()'
julia --project=docs/ docs/make.jl
- name: Upload artifacts
uses: actions/upload-artifact@v3

View File

@ -0,0 +1,21 @@
# Estimation
## Interface
The interface that has to be implemented for an estimator.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/interafce.jl"]
Order = [:type, :constant, :function]
```
## Global Metric Estimator
Implementation of a global metric estimator. It uses the graph properties compute effort, data transfer, and compute intensity.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/global_metric.jl"]
Order = [:type, :function]
```

View File

@ -0,0 +1,41 @@
# Optimization
## Interface
The interface that has to be implemented for an optimization algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["optimization/interafce.jl"]
Order = [:type, :constant, :function]
```
## Random Walk Optimizer
Implementation of a random walk algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/random_walk.jl"]
Order = [:type, :function]
```
## Reduction Optimizer
Implementation of a an optimizer that reduces as far as possible.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/reduce.jl"]
Order = [:type, :function]
```
## Greedy Optimizer
Implementation of a greedy optimization algorithm.
```@autodocs
Modules = [MetagraphOptimization]
Pages = ["estimator/greedy.jl"]
Order = [:type, :function]
```

33
examples/ab5.jl Normal file
View File

@ -0,0 +1,33 @@
using MetagraphOptimization
using BenchmarkTools
println("Getting machine info")
@time machine = get_machine_info()
println("Making model")
@time model = ABCModel()
println("Making process")
process_str = "AB->ABBBBB"
@time process = parse_process(process_str, model)
println("Parsing DAG")
@time graph = parse_dag("input/$process_str.txt", model)
println("Generating input data")
@time input_data = [gen_process_input(process) for _ in 1:1000]
println("Reducing graph")
@time optimize_to_fixpoint!(ReductionOptimizer(), graph)
println("Generating compute function")
@time compute_func = get_compute_function(graph, process, machine)
println("First run, single argument")
@time compute_func(input_data[1])
println("\nBenchmarking function, 1 input")
display(@benchmark compute_func($(input_data[1])))
println("\nBenchmarking function, 1000 inputs")
display(@benchmark compute_func.($input_data))

33
examples/ab7.jl Normal file
View File

@ -0,0 +1,33 @@
using MetagraphOptimization
using BenchmarkTools
println("Getting machine info")
@time machine = get_machine_info()
println("Making model")
@time model = ABCModel()
println("Making process")
process_str = "AB->ABBBBBBB"
@time process = parse_process(process_str, model)
println("Parsing DAG")
@time graph = parse_dag("input/$process_str.txt", model)
println("Generating input data")
@time input_data = [gen_process_input(process) for _ in 1:1000]
println("Reducing graph")
@time optimize_to_fixpoint!(ReductionOptimizer(), graph)
println("Generating compute function")
@time compute_func = get_compute_function(graph, process, machine)
println("First run, single argument")
@time compute_func(input_data[1])
println("\nBenchmarking function, 1 input")
display(@benchmark compute_func($(input_data[1])))
println("\nBenchmarking function, 1000 inputs")
display(@benchmark compute_func.($input_data))

View File

@ -1,59 +0,0 @@
function random_walk!(g::DAG, n::Int64)
# the purpose here is to do "random" operations on the graph to simulate an optimizer
reset_graph!(g)
properties = get_properties(g)
for i in 1:n
# choose push or pop
if rand(Bool)
# push
opt = get_operations(g)
# choose one of fuse/split/reduce
option = rand(1:3)
if option == 1 && !isempty(opt.nodeFusions)
push_operation!(g, rand(collect(opt.nodeFusions)))
elseif option == 2 && !isempty(opt.nodeReductions)
push_operation!(g, rand(collect(opt.nodeReductions)))
elseif option == 3 && !isempty(opt.nodeSplits)
push_operation!(g, rand(collect(opt.nodeSplits)))
else
i = i - 1
end
else
# pop
if (can_pop(g))
pop_operation!(g)
else
i = i - 1
end
end
end
return nothing
end
function reduce_all!(g::DAG)
reset_graph!(g)
opt = get_operations(g)
while (!isempty(opt.nodeReductions))
push_operation!(g, pop!(opt.nodeReductions))
if (isempty(opt.nodeReductions))
opt = get_operations(g)
end
end
return nothing
end
function reduce_one!(g::DAG)
opt = get_operations(g)
if !isempty(opt.nodeReductions)
push_operation!(g, pop!(opt.nodeReductions))
end
opt = get_operations(g)
return nothing
end

File diff suppressed because it is too large Load Diff

View File

@ -211,10 +211,8 @@
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"\n",
"# We can also mute the graph by applying some operations to it\n",
"reduce_all!(graph)"
"optimize_to_fixpoint!(ReductionOptimizer(), graph)"
]
},
{

View File

@ -30,8 +30,7 @@
"metadata": {},
"outputs": [],
"source": [
"include(\"../examples/profiling_utilities.jl\")\n",
"@ProfileView.profview reduce_all!(graph)"
"@ProfileView.profview optimize_to_fixpoint!(ReductionOptimizer(), graph)"
]
},
{

View File

@ -5,6 +5,7 @@ A module containing tools to work on DAGs.
"""
module MetagraphOptimization
# graph types
export DAG
export Node
export Edge
@ -18,6 +19,7 @@ export FusedComputeTask
export PossibleOperations
export GraphProperties
# graph functions
export make_node
export make_edge
export insert_node
@ -27,10 +29,15 @@ export is_exit_node
export parents
export children
export compute
export data
export compute_effort
export task
export get_properties
export get_exit_node
export operation_stack_length
export is_valid, is_scheduled
# graph operation related
export Operation
export AppliedOperation
export NodeFusion
@ -42,6 +49,10 @@ export can_pop
export reset_graph!
export get_operations
# ABC model
export ParticleValue
export ParticleA, ParticleB, ParticleC
export ABCProcessDescription, ABCProcessInput, ABCModel
export ComputeTaskP
export ComputeTaskS1
export ComputeTaskS2
@ -49,14 +60,22 @@ export ComputeTaskV
export ComputeTaskU
export ComputeTaskSum
# code generation related
export execute
export parse_dag, parse_process
export gen_process_input
export get_compute_function
export ParticleValue
export ParticleA, ParticleB, ParticleC
export ABCProcessDescription, ABCProcessInput, ABCModel
# estimator
export cost_type, graph_cost, operation_effect
export GlobalMetricEstimator, CDCost
# optimization
export AbstractOptimizer, GreedyOptimizer, ReductionOptimizer, RandomWalkOptimizer
export optimize_step!, optimize!
export fixpoint_reached, optimize_to_fixpoint!
# machine info
export Machine
export get_machine_info
@ -105,6 +124,7 @@ include("node/properties.jl")
include("node/validate.jl")
include("operation/utility.jl")
include("operation/iterate.jl")
include("operation/apply.jl")
include("operation/clean.jl")
include("operation/find.jl")
@ -121,6 +141,14 @@ include("task/compute.jl")
include("task/print.jl")
include("task/properties.jl")
include("estimator/interface.jl")
include("estimator/global_metric.jl")
include("optimization/interface.jl")
include("optimization/greedy.jl")
include("optimization/random_walk.jl")
include("optimization/reduce.jl")
include("models/interface.jl")
include("models/print.jl")

View File

@ -79,7 +79,7 @@ function gen_input_assignment_code(
# TODO: how to get the "default" cpu device?
device = entry_device(machine)
evalExpr = eval(gen_access_expr(device, symbol))
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue($p, 1.0)"))
push!(assignInputs, Meta.parse("$(evalExpr)::ParticleValue{$type} = ParticleValue($p, 1.0)"))
end
end
@ -102,6 +102,7 @@ function get_compute_function(graph::DAG, process::AbstractProcessDescription, m
expr = Meta.parse(
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
)
func = eval(expr)
return func

View File

@ -0,0 +1,77 @@
"""
CDCost
Representation of a [`DAG`](@ref)'s cost as estimated by the [`GlobalMetricEstimator`](@ref).
# Fields:
`.data`: The total data transfer.\\
`.computeEffort`: The total compute effort.\\
`.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`.
!!! note
Note that the `computeIntensity` doesn't necessarily make sense in the context of only operation costs.
For example, for node fusions this will always be 0, since the computeEffort is zero.
It will still work as intended when adding/subtracting to/from a `graph_cost` estimate.
"""
const CDCost = NamedTuple{(:data, :computeEffort, :computeIntensity), Tuple{Float64, Float64, Float64}}
function +(cost1::CDCost, cost2::CDCost)::CDCost
d = cost1.data + cost2.data
ce = computeEffort = cost1.computeEffort + cost2.computeEffort
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end
function -(cost1::CDCost, cost2::CDCost)::CDCost
d = cost1.data - cost2.data
ce = computeEffort = cost1.computeEffort - cost2.computeEffort
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end
function isless(cost1::CDCost, cost2::CDCost)::Bool
return cost1.data + cost1.computeEffort < cost2.data + cost2.computeEffort
end
function zero(type::Type{CDCost})
return (data = 0.0, computeEffort = 00.0, computeIntensity = 0.0)::CDCost
end
function typemax(type::Type{CDCost})
return (data = Inf, computeEffort = Inf, computeIntensity = 0.0)::CDCost
end
struct GlobalMetricEstimator <: AbstractEstimator end
function cost_type(estimator::GlobalMetricEstimator)::Type{CDCost}
return CDCost
end
function graph_cost(estimator::GlobalMetricEstimator, graph::DAG)
properties = get_properties(graph)
return (
data = properties.data,
computeEffort = properties.computeEffort,
computeIntensity = properties.computeIntensity,
)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeFusion)
return (data = -data(operation.input[2].task), computeEffort = 0.0, computeIntensity = 0.0)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeReduction)
s = length(operation.input) - 1
return (
data = s * -data(task(operation.input[1])),
computeEffort = s * -compute_effort(task(operation.input[1])),
computeIntensity = typeof(operation.input) <: DataTaskNode ? 0.0 : Inf,
)::CDCost
end
function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operation::NodeSplit)
s::Float64 = length(parents(operation.input)) - 1
d::Float64 = s * data(task(operation.input))
ce::Float64 = s * compute_effort(task(operation.input))
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
end

View File

@ -0,0 +1,44 @@
"""
AbstractEstimator
Abstract base type for an estimator. An estimator estimates the cost of a graph or the difference an operation applied to a graph will make to its cost.
Interface functions are
- [`graph_cost`](@ref)
- [`operation_effect`](@ref)
"""
abstract type AbstractEstimator end
"""
cost_type(estimator::AbstractEstimator)
Interface function returning a specific estimator's cost type, i.e., the type returned by its implementation of [`graph_cost`](@ref) and [`operation_effect`](@ref).
"""
function cost_type end
"""
graph_cost(estimator::AbstractEstimator, graph::DAG)
Get the total estimated cost of the graph. The cost's data type can be chosen by the implementation, but must have a usable lessthan comparison operator (<), basic math operators (+, -) and an implementation of `zero()` and `typemax()`.
"""
function graph_cost end
"""
operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation)
Get the estimated effect on the cost of the graph, such that `graph_cost(estimator, graph) + operation_effect(estimator, graph, operation) ~= graph_cost(estimator, graph_with_operation_applied)`. There is no hard requirement for this, but the better the estimate, the better an optimization algorithm will be.
!!! note
There is a default implementation of this function, applying the operation, calling [`graph_cost`](@ref), then popping the operation again.
It can be much faster to overload this function for a specific estimator and directly compute the effects from the operation if possible.
"""
function operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation)
# This is currently not stably working, see issue #16
cost = graph_cost(estimator, graph)
push_operation!(graph, operation)
cost_after = graph_cost(estimator, graph)
pop_operation!(graph)
return cost_after - cost
end

View File

@ -17,21 +17,5 @@ function in(edge::Edge, graph::DAG)
return false
end
return n1 in n2.children
end
"""
==(n1::Node, n2::Node, g::DAG)
Check equality of two nodes in a graph.
"""
function ==(n1::Node, n2::Node, g::DAG)
if typeof(n1) != typeof(n2)
return false
end
if !(n1 in g) || !(n2 in g)
return false
end
return n1.task == n2.task && children(n1) == children(n2)
return n1 in children(n2)
end

View File

@ -46,7 +46,7 @@ Insert the edge between node1 (child) and node2 (parent) into the graph.
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`remove_edge!`](@ref)
"""
function insert_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
@assert (node2 node1.parents) && (node1 node2.children) "Edge to insert already exists"
#@assert (node2 ∉ parents(node1)) && (node1 ∉ children(node2)) "Edge to insert already exists"
# 1: mute
# edge points from child to parent
@ -85,7 +85,7 @@ Remove the node from the graph.
See also: [`insert_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
"""
function remove_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
@assert node in graph.nodes "Trying to remove a node that's not in the graph"
#@assert node in graph.nodes "Trying to remove a node that's not in the graph"
# 1: mute
delete!(graph.nodes, node)
@ -124,18 +124,29 @@ function remove_edge!(graph::DAG, node1::Node, node2::Node; track = true, invali
pre_length2 = length(node2.children)
#TODO: filter is very slow
filter!(x -> x != node2, node1.parents)
filter!(x -> x != node1, node2.children)
for i in eachindex(node1.parents)
if (node1.parents[i] == node2)
splice!(node1.parents, i)
break
end
end
@assert begin
for i in eachindex(node2.children)
if (node2.children[i] == node1)
splice!(node2.children, i)
break
end
end
#=@assert begin
removed = pre_length1 - length(node1.parents)
removed <= 1
end "removed more than one node from node1's parents"
end "removed more than one node from node1's parents"=#
@assert begin
removed = pre_length2 - length(node2.children)
#=@assert begin
removed = pre_length2 - length(children(node2))
removed <= 1
end "removed more than one node from node2's children"
end "removed more than one node from node2's children"=#
# 2: keep track
if (track)
@ -163,7 +174,7 @@ function replace_children!(task::FusedComputeTask, before, after)
replacedIn1 = length(findall(x -> x == before, task.t1_inputs))
replacedIn2 = length(findall(x -> x == before, task.t2_inputs))
@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
#@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
replace!(task.t1_inputs, before => after)
replace!(task.t2_inputs, before => after)
@ -185,33 +196,33 @@ end
function update_child!(graph::DAG, n::Node, child_before::Symbol, child_after::Symbol; track = true)
# only need to update fused compute tasks
if !(typeof(n.task) <: FusedComputeTask)
if !(typeof(task(n)) <: FusedComputeTask)
return nothing
end
taskBefore = copy(n.task)
taskBefore = copy(task(n))
if !((child_before in n.task.t1_inputs) || (child_before in n.task.t2_inputs))
#=if !((child_before in task(n).t1_inputs) || (child_before in task(n).t2_inputs))
println("------------------ Nothing to replace!! ------------------")
child_ids = Vector{String}()
for child in n.children
for child in children(n)
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
end=#
replace_children!(n.task, child_before, child_after)
replace_children!(task(n), child_before, child_after)
if !((child_after in n.task.t1_inputs) || (child_after in n.task.t2_inputs))
#=if !((child_after in task(n).t1_inputs) || (child_after in task(n).t2_inputs))
println("------------------ Did not replace anything!! ------------------")
child_ids = Vector{String}()
for child in n.children
for child in children(n)
push!(child_ids, "$(child.id)")
end
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
@assert false
end
end=#
# keep track
if (track)
@ -242,8 +253,14 @@ function invalidate_caches!(graph::DAG, operation::NodeFusion)
# delete the operation from all caches of nodes involved in the operation
# TODO: filter is very slow
filter!(!=(operation), operation.input[1].nodeFusions)
filter!(!=(operation), operation.input[3].nodeFusions)
for n in [1, 3]
for i in eachindex(operation.input[n].nodeFusions)
if operation == operation.input[n].nodeFusions[i]
splice!(operation.input[n].nodeFusions, i)
break
end
end
end
operation.input[2].nodeFusion = missing

View File

@ -30,10 +30,10 @@ function show(io::IO, graph::DAG)
nodeDict = Dict{Type, Int64}()
noEdges = 0
for node in graph.nodes
if haskey(nodeDict, typeof(node.task))
nodeDict[typeof(node.task)] = nodeDict[typeof(node.task)] + 1
if haskey(nodeDict, typeof(task(node)))
nodeDict[typeof(task(node))] = nodeDict[typeof(task(node))] + 1
else
nodeDict[typeof(node.task)] = 1
nodeDict[typeof(task(node))] = 1
end
noEdges += length(parents(node))
end

View File

@ -43,3 +43,12 @@ function get_entry_nodes(graph::DAG)
end
return result
end
"""
operation_stack_length(graph::DAG)
Return the number of operations applied to the graph.
"""
function operation_stack_length(graph::DAG)
return length(graph.appliedOperations) + length(graph.operationsToApply)
end

View File

@ -24,7 +24,7 @@ To get the set of possible operations, use [`get_operations`](@ref).
The members of the object should not be manually accessed, instead always use the provided interface functions.
"""
mutable struct DAG
nodes::Set{Node}
nodes::Set{Union{DataTaskNode, ComputeTaskNode}}
# The operations currently applied to the set of nodes
appliedOperations::Stack{AppliedOperation}
@ -36,7 +36,7 @@ mutable struct DAG
possibleOperations::PossibleOperations
# The set of nodes whose possible operations need to be reevaluated
dirtyNodes::Set{Node}
dirtyNodes::Set{Union{DataTaskNode, ComputeTaskNode}}
# "snapshot" system: keep track of added/removed nodes/edges since last snapshot
# these are muted in insert_node! etc.

View File

@ -7,7 +7,7 @@ Return the particle and value as is.
0 FLOP.
"""
function compute(::ComputeTaskP, data::ParticleValue)
function compute(::ComputeTaskP, data::ParticleValue{P})::ParticleValue{P} where {P <: ABCParticle}
return data
end
@ -18,7 +18,7 @@ Compute an outer edge. Return the particle value with the same particle and the
1 FLOP.
"""
function compute(::ComputeTaskU, data::ParticleValue)
function compute(::ComputeTaskU, data::ParticleValue{P})::ParticleValue{P} where {P <: ABCParticle}
return ParticleValue(data.p, data.v * outer_edge(data.p))
end
@ -29,7 +29,11 @@ Compute a vertex. Preserve momentum and particle types (AB->C etc.) to create re
6 FLOP.
"""
function compute(::ComputeTaskV, data1::ParticleValue, data2::ParticleValue)
function compute(
::ComputeTaskV,
data1::ParticleValue{P1},
data2::ParticleValue{P2},
)::ParticleValue where {P1 <: ABCParticle, P2 <: ABCParticle}
p3 = preserve_momentum(data1.p, data2.p)
dataOut = ParticleValue(p3, data1.v * vertex() * data2.v)
return dataOut
@ -44,14 +48,15 @@ For valid inputs, both input particles should have the same momenta at this poin
12 FLOP.
"""
function compute(::ComputeTaskS2, data1::ParticleValue, data2::ParticleValue)
function compute(::ComputeTaskS2, data1::ParticleValue{P}, data2::ParticleValue{P})::Float64 where {P <: ABCParticle}
#=
@assert isapprox(abs(data1.p.momentum.E), abs(data2.p.momentum.E), rtol = 0.001, atol = sqrt(eps())) "E: $(data1.p.momentum.E) vs. $(data2.p.momentum.E)"
@assert isapprox(data1.p.momentum.px, -data2.p.momentum.px, rtol = 0.001, atol = sqrt(eps())) "px: $(data1.p.momentum.px) vs. $(data2.p.momentum.px)"
@assert isapprox(data1.p.momentum.py, -data2.p.momentum.py, rtol = 0.001, atol = sqrt(eps())) "py: $(data1.p.momentum.py) vs. $(data2.p.momentum.py)"
@assert isapprox(data1.p.momentum.pz, -data2.p.momentum.pz, rtol = 0.001, atol = sqrt(eps())) "pz: $(data1.p.momentum.pz) vs. $(data2.p.momentum.pz)"
=#
return data1.v * inner_edge(data1.p) * data2.v
inner = inner_edge(data1.p)
return data1.v * inner * data2.v
end
"""
@ -61,7 +66,7 @@ Compute inner edge (1 input particle, 1 output particle).
11 FLOP.
"""
function compute(::ComputeTaskS1, data::ParticleValue)
function compute(::ComputeTaskS1, data::ParticleValue{P})::ParticleValue{P} where {P <: ABCParticle}
return ParticleValue(data.p, data.v * inner_edge(data.p))
end
@ -72,7 +77,7 @@ Compute a sum over the vector. Use an algorithm that accounts for accumulated er
Linearly many FLOP with growing data.
"""
function compute(::ComputeTaskSum, data::Vector{Float64})
function compute(::ComputeTaskSum, data::Vector{Float64})::Float64
return sum_kbn(data)
end

View File

@ -181,7 +181,7 @@ function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = fa
insert_edge!(graph, compute_S2, data_out, track = false, invalidate_cache = false)
insert_edge!(graph, data_out, sum_node, track = false, invalidate_cache = false)
add_child!(sum_node.task)
add_child!(task(sum_node))
elseif occursin(regex_plus, node)
if (verbose)
println("\rReading Nodes Complete ")

View File

@ -1,5 +1,7 @@
using QEDbase
import QEDbase.mass
"""
ABCModel <: AbstractPhysicsModel
@ -87,9 +89,9 @@ For 2 given (non-equal) particle types, return the third of ABC.
"""
function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
@assert t1 != t2
if t1 != Type{ParticleA} && t2 != Type{ParticleA}
if t1 != ParticleA && t2 != ParticleA
return ParticleA
elseif t1 != Type{ParticleB} && t2 != Type{ParticleB}
elseif t1 != ParticleB && t2 != ParticleB
return ParticleB
else
return ParticleC
@ -161,7 +163,6 @@ Takes 4 effective FLOP.
function preserve_momentum(p1::ABCParticle, p2::ABCParticle)
t3 = interaction_result(typeof(p1), typeof(p2))
p3 = t3(p1.momentum + p2.momentum)
return p3
end

View File

@ -3,35 +3,35 @@
Return the compute effort of an S1 task.
"""
compute_effort(t::ComputeTaskS1) = 11
compute_effort(t::ComputeTaskS1)::Float64 = 11.0
"""
compute_effort(t::ComputeTaskS2)
Return the compute effort of an S2 task.
"""
compute_effort(t::ComputeTaskS2) = 12
compute_effort(t::ComputeTaskS2)::Float64 = 12.0
"""
compute_effort(t::ComputeTaskU)
Return the compute effort of a U task.
"""
compute_effort(t::ComputeTaskU) = 1
compute_effort(t::ComputeTaskU)::Float64 = 1.0
"""
compute_effort(t::ComputeTaskV)
Return the compute effort of a V task.
"""
compute_effort(t::ComputeTaskV) = 6
compute_effort(t::ComputeTaskV)::Float64 = 6.0
"""
compute_effort(t::ComputeTaskP)
Return the compute effort of a P task.
"""
compute_effort(t::ComputeTaskP) = 0
compute_effort(t::ComputeTaskP)::Float64 = 0.0
"""
compute_effort(t::ComputeTaskSum)
@ -41,7 +41,7 @@ Return the compute effort of a Sum task.
Note: This is a constant compute effort, even though sum scales with the number of its inputs. Since there is only ever a single sum node in a graph generated from the ABC-Model,
this doesn't matter.
"""
compute_effort(t::ComputeTaskSum) = 1
compute_effort(t::ComputeTaskSum)::Float64 = 1.0
"""
show(io::IO, t::DataTask)

View File

@ -4,7 +4,7 @@
Task representing a specific data transfer in the ABC Model.
"""
struct DataTask <: AbstractDataTask
data::UInt64
data::Float64
end
"""

View File

@ -21,7 +21,7 @@ end
Equality comparison between two [`ComputeTaskNode`](@ref)s.
"""
function ==(n1::ComputeTaskNode, n2::ComputeTaskNode)
function ==(n1::ComputeTaskNode{TaskType}, n2::ComputeTaskNode{TaskType}) where {TaskType <: AbstractComputeTask}
return n1.id == n2.id
end
@ -30,6 +30,6 @@ end
Equality comparison between two [`DataTaskNode`](@ref)s.
"""
function ==(n1::DataTaskNode, n2::DataTaskNode)
function ==(n1::DataTaskNode{TaskType}, n2::DataTaskNode{TaskType}) where {TaskType <: AbstractDataTask}
return n1.id == n2.id
end

View File

@ -13,8 +13,8 @@ ComputeTaskNode(t::AbstractComputeTask) = ComputeTaskNode(
)
copy(m::Missing) = missing
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(n.task))
copy(n::DataTaskNode) = DataTaskNode(copy(n.task), n.name)
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(task(n)))
copy(n::DataTaskNode) = DataTaskNode(copy(task(n)), n.name)
"""
make_node(t::AbstractTask)

View File

@ -4,7 +4,7 @@
Print a short string representation of the node to io.
"""
function show(io::IO, n::Node)
return print(io, "Node(", n.task, ")")
return print(io, "Node(", task(n), ")")
end
"""

View File

@ -3,25 +3,27 @@
Return whether this node is an entry node in its graph, i.e., it has no children.
"""
is_entry_node(node::Node) = length(node.children) == 0
is_entry_node(node::Node) = length(children(node)) == 0
"""
is_exit_node(node::Node)
Return whether this node is an exit node of its graph, i.e., it has no parents.
"""
is_exit_node(node::Node) = length(node.parents) == 0
is_exit_node(node::Node)::Bool = length(parents(node)) == 0
"""
data(edge::Edge)
task(node::Node)
Return the data transfered by this edge, i.e., 0 if the child is a [`ComputeTaskNode`](@ref), otherwise the child's `data()`.
Return the node's task.
"""
function data(edge::Edge)
if typeof(edge.edge[1]) <: DataTaskNode
return data(edge.edge[1].task)
end
return 0.0
function task(node::DataTaskNode{TaskType})::TaskType where {TaskType <: Union{AbstractDataTask, AbstractComputeTask}}
return node.task
end
function task(
node::ComputeTaskNode{TaskType},
)::TaskType where {TaskType <: Union{AbstractDataTask, AbstractComputeTask}}
return node.task
end
"""
@ -31,8 +33,11 @@ Return a copy of the node's children so it can safely be muted without changing
A node's children are its prerequisite nodes, nodes that need to execute before the task of this node.
"""
function children(node::Node)
return copy(node.children)
function children(node::DataTaskNode)::Vector{ComputeTaskNode}
return node.children
end
function children(node::ComputeTaskNode)::Vector{DataTaskNode}
return node.children
end
"""
@ -42,8 +47,11 @@ Return a copy of the node's parents so it can safely be muted without changing t
A node's parents are its subsequent nodes, nodes that need this node to execute.
"""
function parents(node::Node)
return copy(node.parents)
function parents(node::DataTaskNode)::Vector{ComputeTaskNode}
return node.parents
end
function parents(node::ComputeTaskNode)::Vector{DataTaskNode}
return node.parents
end
"""
@ -53,11 +61,11 @@ Return a vector of all siblings of this node.
A node's siblings are all children of any of its parents. The result contains no duplicates and includes the node itself.
"""
function siblings(node::Node)
function siblings(node::Node)::Set{Node}
result = Set{Node}()
push!(result, node)
for parent in node.parents
union!(result, parent.children)
for parent in parents(node)
union!(result, children(parent))
end
return result
@ -73,11 +81,11 @@ A node's partners are all parents of any of its children. The result contains no
Note: This is very slow when there are multiple children with many parents.
This is less of a problem in [`siblings(node::Node)`](@ref) because (depending on the model) there are no nodes with a large number of children, or only a single one.
"""
function partners(node::Node)
function partners(node::Node)::Set{Node}
result = Set{Node}()
push!(result, node)
for child in node.children
union!(result, child.parents)
for child in children(node)
union!(result, parents(child))
end
return result
@ -90,8 +98,8 @@ Alternative version to [`partners(node::Node)`](@ref), avoiding allocation of a
"""
function partners(node::Node, set::Set{Node})
push!(set, node)
for child in node.children
union!(set, child.parents)
for child in children(node)
union!(set, parents(child))
end
return nothing
end
@ -101,8 +109,8 @@ end
Return whether the `potential_parent` is a parent of `node`.
"""
function is_parent(potential_parent::Node, node::Node)
return potential_parent in node.parents
function is_parent(potential_parent::Node, node::Node)::Bool
return potential_parent in parents(node)
end
"""
@ -110,6 +118,6 @@ end
Return whether the `potential_child` is a child of `node`.
"""
function is_child(potential_child::Node, node::Node)
return potential_child in node.children
function is_child(potential_child::Node, node::Node)::Bool
return potential_child in children(node)
end

View File

@ -33,8 +33,8 @@ Any node that transfers data and does no computation.
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.\\
`.name`: The name of this node for entry nodes into the graph ([`is_entry_node`](@ref)) to reliably assign the inputs to the correct nodes when executing.\\
"""
mutable struct DataTaskNode <: Node
task::AbstractDataTask
mutable struct DataTaskNode{TaskType <: AbstractDataTask} <: Node
task::TaskType
# use vectors as sets have way too much memory overhead
parents::Vector{Node}
@ -73,8 +73,8 @@ Any node that computes a result from inputs using an [`AbstractComputeTask`](@re
`.nodeFusions`: A vector of this node's [`NodeFusion`](@ref)s. For a `ComputeTaskNode` there can be any number of these, unlike the [`DataTaskNode`](@ref)s.\\
`.device`: The Device this node has been scheduled on by a [`Scheduler`](@ref).
"""
mutable struct ComputeTaskNode <: Node
task::AbstractComputeTask
mutable struct ComputeTaskNode{TaskType <: AbstractComputeTask} <: Node
task::TaskType
parents::Vector{Node}
children::Vector{Node}
id::Base.UUID
@ -83,7 +83,7 @@ mutable struct ComputeTaskNode <: Node
nodeSplit::Union{Operation, Missing}
# for ComputeTasks there can be multiple fusions, unlike the DataTasks
nodeFusions::Vector{Operation}
nodeFusions::Vector{<:Operation}
# the device this node is assigned to execute on
device::Union{AbstractDevice, Missing}

View File

@ -29,7 +29,7 @@ function is_valid_node(graph::DAG, node::Node)
@assert is_valid(graph, node.nodeSplit)
end=#
if !(typeof(node.task) <: FusedComputeTask)
if !(typeof(task(node)) <: FusedComputeTask)
# the remaining checks are only necessary for fused compute tasks
return true
end
@ -37,7 +37,7 @@ function is_valid_node(graph::DAG, node::Node)
# every child must be in some input of the task
for child in node.children
str = Symbol(to_var_name(child.id))
@assert (str in node.task.t1_inputs) || (str in node.task.t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(node.task.t1_inputs)\nt2_inputs: $(node.task.t2_inputs)"
@assert (str in task(node).t1_inputs) || (str in task(node).t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(task(node).t1_inputs)\nt2_inputs: $(task(node).t2_inputs)"
end
return true

View File

@ -132,11 +132,11 @@ function revert_diff!(graph::DAG, diff::Diff)
insert_edge!(graph, edge.edge[1], edge.edge[2], track = false)
end
for (node, task) in diff.updatedChildren
for (node, t) in diff.updatedChildren
# node must be fused compute task at this point
@assert typeof(node.task) <: FusedComputeTask
@assert typeof(task(node)) <: FusedComputeTask
node.task = task
node.task = t
end
graph.properties -= GraphProperties(diff)
@ -158,11 +158,11 @@ function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::Com
get_snapshot_diff(graph)
# save children and parents
n1Children = children(n1)
n3Parents = parents(n3)
n1Children = copy(children(n1))
n3Parents = copy(parents(n3))
n1Task = copy(n1.task)
n3Task = copy(n3.task)
n1Task = copy(task(n1))
n3Task = copy(task(n3))
# assemble the input node vectors of n1 and n3 to save into the FusedComputeTask
n1Inputs = Vector{Symbol}()
@ -177,7 +177,7 @@ function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::Com
remove_node!(graph, n2)
# get n3's children now so it automatically excludes n2
n3Children = children(n3)
n3Children = copy(children(n3))
n3Inputs = Vector{Symbol}()
for child in n3Children
@ -228,7 +228,7 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
get_snapshot_diff(graph)
n1 = nodes[1]
n1Children = children(n1)
n1Children = copy(children(n1))
n1Parents = Set(n1.parents)
@ -245,7 +245,7 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
remove_edge!(graph, child, n)
end
for parent in parents(n)
for parent in copy(parents(n))
remove_edge!(graph, n, parent)
# collect all parents
@ -278,14 +278,17 @@ Split the given node into one node per parent, return the applied difference to
For details see [`NodeSplit`](@ref).
"""
function node_split!(graph::DAG, n1::Node)
function node_split!(
graph::DAG,
n1::Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}},
) where {TaskType <: AbstractTask}
@assert is_valid_node_split_input(graph, n1)
# clear snapshot
get_snapshot_diff(graph)
n1Parents = parents(n1)
n1Children = children(n1)
n1Parents = copy(parents(n1))
n1Children = copy(children(n1))
for parent in n1Parents
remove_edge!(graph, n1, parent)

View File

@ -13,18 +13,18 @@ function find_fusions!(graph::DAG, node::DataTaskNode)
return nothing
end
if length(node.parents) != 1 || length(node.children) != 1
if length(parents(node)) != 1 || length(children(node)) != 1
return nothing
end
child_node = first(node.children)
parent_node = first(node.parents)
child_node = first(children(node))
parent_node = first(parents(node))
if !(child_node in graph) || !(parent_node in graph)
error("Parents/Children that are not in the graph!!!")
end
if length(child_node.parents) != 1
if length(parents(child_node)) != 1
return nothing
end
@ -44,11 +44,11 @@ Find node fusions involving the given compute node. The function pushes the foun
"""
function find_fusions!(graph::DAG, node::ComputeTaskNode)
# just find fusions in neighbouring DataTaskNodes
for child in node.children
for child in children(node)
find_fusions!(graph, child)
end
for parent in node.parents
for parent in parents(node)
find_fusions!(graph, parent)
end
@ -123,7 +123,10 @@ end
Sort this node's parent and child sets, then find fusions, reductions and splits involving it. Needs to be called after the node was changed in some way.
"""
function clean_node!(graph::DAG, node::Node)
function clean_node!(
graph::DAG,
node::Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}},
) where {TaskType <: AbstractTask}
sort_node!(node)
find_fusions!(graph, node)

View File

@ -203,18 +203,18 @@ function generate_operations(graph::DAG)
# --- find possible node fusions ---
@threads for node in nodeArray
if (typeof(node) <: DataTaskNode)
if length(node.parents) != 1
if length(parents(node)) != 1
# data node can only have a single parent
continue
end
parent_node = first(node.parents)
parent_node = first(parents(node))
if length(node.children) != 1
if length(children(node)) != 1
# this node is an entry node or has multiple children which should not be possible
continue
end
child_node = first(node.children)
if (length(child_node.parents) != 1)
child_node = first(children(node))
if (length(parents(child_node)) != 1)
continue
end

View File

@ -14,9 +14,7 @@ function get_operations(graph::DAG)
generate_operations(graph)
end
for node in graph.dirtyNodes
clean_node!(graph, node)
end
clean_node!.(Ref(graph), graph.dirtyNodes)
empty!(graph.dirtyNodes)
return graph.possibleOperations

39
src/operation/iterate.jl Normal file
View File

@ -0,0 +1,39 @@
import Base.iterate
const _POSSIBLE_OPERATIONS_FIELDS = fieldnames(PossibleOperations)
_POIteratorStateType =
NamedTuple{(:result, :state), Tuple{Union{NodeFusion, NodeReduction, NodeSplit}, Tuple{Symbol, Int64}}}
@inline function iterate(possibleOperations::PossibleOperations)::Union{Nothing, _POIteratorStateType}
for fieldname in _POSSIBLE_OPERATIONS_FIELDS
iterator = iterate(getfield(possibleOperations, fieldname))
if (!isnothing(iterator))
return (result = iterator[1], state = (fieldname, iterator[2]))
end
end
return nothing
end
@inline function iterate(possibleOperations::PossibleOperations, state)::Union{Nothing, _POIteratorStateType}
newStateSym = state[1]
newStateIt = iterate(getfield(possibleOperations, newStateSym), state[2])
if !isnothing(newStateIt)
return (result = newStateIt[1], state = (newStateSym, newStateIt[2]))
end
# cycle to next field
index = findfirst(x -> x == newStateSym, _POSSIBLE_OPERATIONS_FIELDS) + 1
while index <= length(_POSSIBLE_OPERATIONS_FIELDS)
newStateSym = _POSSIBLE_OPERATIONS_FIELDS[index]
newStateIt = iterate(getfield(possibleOperations, newStateSym))
if !isnothing(newStateIt)
return (result = newStateIt[1], state = (newStateSym, newStateIt[2]))
end
index += 1
end
return nothing
end

View File

@ -30,7 +30,7 @@ function show(io::IO, op::NodeReduction)
print(io, "NR: ")
print(io, length(op.input))
print(io, "x")
return print(io, op.input[1].task)
return print(io, task(op.input[1]))
end
"""
@ -40,7 +40,7 @@ Print a string representation of the node split to io.
"""
function show(io::IO, op::NodeSplit)
print(io, "NS: ")
return print(io, op.input.task)
return print(io, task(op.input))
end
"""
@ -50,9 +50,9 @@ Print a string representation of the node fusion to io.
"""
function show(io::IO, op::NodeFusion)
print(io, "NF: ")
print(io, op.input[1].task)
print(io, task(op.input[1]))
print(io, "->")
print(io, op.input[2].task)
print(io, task(op.input[2]))
print(io, "->")
return print(io, op.input[3].task)
return print(io, task(op.input[3]))
end

View File

@ -40,8 +40,9 @@ A chain of (n1, n2, n3) can be fused if:
See also: [`can_fuse`](@ref)
"""
struct NodeFusion <: Operation
input::Tuple{ComputeTaskNode, DataTaskNode, ComputeTaskNode}
struct NodeFusion{TaskType1 <: AbstractComputeTask, TaskType2 <: AbstractDataTask, TaskType3 <: AbstractComputeTask} <:
Operation
input::Tuple{ComputeTaskNode{TaskType1}, DataTaskNode{TaskType2}, ComputeTaskNode{TaskType3}}
end
"""
@ -49,8 +50,12 @@ end
The applied version of the [`NodeFusion`](@ref).
"""
struct AppliedNodeFusion <: AppliedOperation
operation::NodeFusion
struct AppliedNodeFusion{
TaskType1 <: AbstractComputeTask,
TaskType2 <: AbstractDataTask,
TaskType3 <: AbstractComputeTask,
} <: AppliedOperation
operation::NodeFusion{TaskType1, TaskType2, TaskType3}
diff::Diff
end
@ -73,8 +78,8 @@ A vector of nodes can be reduced if:
See also: [`can_reduce`](@ref)
"""
struct NodeReduction <: Operation
input::Vector{Node}
struct NodeReduction{NodeType <: Node} <: Operation
input::Vector{NodeType}
end
"""
@ -82,8 +87,8 @@ end
The applied version of the [`NodeReduction`](@ref).
"""
struct AppliedNodeReduction <: AppliedOperation
operation::NodeReduction
struct AppliedNodeReduction{NodeType <: Node} <: AppliedOperation
operation::NodeReduction{NodeType}
diff::Diff
end
@ -102,8 +107,8 @@ A node can be split if:
See also: [`can_split`](@ref)
"""
struct NodeSplit <: Operation
input::Node
struct NodeSplit{NodeType <: Node} <: Operation
input::NodeType
end
"""
@ -111,7 +116,7 @@ end
The applied version of the [`NodeSplit`](@ref).
"""
struct AppliedNodeSplit <: AppliedOperation
operation::NodeSplit
struct AppliedNodeSplit{NodeType <: Node} <: AppliedOperation
operation::NodeSplit{NodeType}
diff::Diff
end

View File

@ -61,7 +61,7 @@ function can_fuse(n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
return false
end
if length(n2.parents) != 1 || length(n2.children) != 1 || length(n1.parents) != 1
if length(parents(n2)) != 1 || length(children(n2)) != 1 || length(parents(n1)) != 1
return false
end
@ -74,12 +74,15 @@ end
Return whether the given two nodes can be reduced. See [`NodeReduction`](@ref) for the requirements.
"""
function can_reduce(n1::Node, n2::Node)
if (n1.task != n2.task)
return false
end
return false
end
n1_length = length(n1.children)
n2_length = length(n2.children)
function can_reduce(
n1::NodeType,
n2::NodeType,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
n1_length = length(children(n1))
n2_length = length(children(n2))
if (n1_length != n2_length)
return false
@ -88,19 +91,19 @@ function can_reduce(n1::Node, n2::Node)
# this seems to be the most common case so do this first
# doing it manually is a lot faster than using the sets for a general solution
if (n1_length == 2)
if (n1.children[1] != n2.children[1])
if (n1.children[1] != n2.children[2])
if (children(n1)[1] != children(n2)[1])
if (children(n1)[1] != children(n2)[2])
return false
end
# 1_1 == 2_2
if (n1.children[2] != n2.children[1])
if (children(n1)[2] != children(n2)[1])
return false
end
return true
end
# 1_1 == 2_1
if (n1.children[2] != n2.children[2])
if (children(n1)[2] != children(n2)[2])
return false
end
return true
@ -108,11 +111,11 @@ function can_reduce(n1::Node, n2::Node)
# this is simple
if (n1_length == 1)
return n1.children[1] == n2.children[1]
return children(n1)[1] == children(n2)[1]
end
# this takes a long time
return Set(n1.children) == Set(n2.children)
return Set(children(n1)) == Set(children(n2))
end
"""
@ -138,7 +141,14 @@ end
Equality comparison between two node fusions. Two node fusions are considered equal if they have the same inputs.
"""
function ==(op1::NodeFusion, op2::NodeFusion)
function ==(
op1::NodeFusion{ComputeTaskType1, DataTaskType, ComputeTaskType2},
op2::NodeFusion{ComputeTaskType1, DataTaskType, ComputeTaskType2},
) where {
ComputeTaskType1 <: AbstractComputeTask,
DataTaskType <: AbstractDataTask,
ComputeTaskType2 <: AbstractComputeTask,
}
# there can only be one node fusion on a given data task, so if the data task is the same, the fusion is the same
return op1.input[2] == op2.input[2]
end

View File

@ -54,9 +54,9 @@ function is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node})
@assert is_valid(graph, n)
end
t = typeof(nodes[1].task)
t = typeof(task(nodes[1]))
for n in nodes
if typeof(n.task) != t
if typeof(task(n)) != t
throw(AssertionError("[Node Reduction] The given nodes are not of the same type"))
end
@ -115,7 +115,7 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, nr::NodeReduction)
@assert is_valid_node_reduction_input(graph, nr.input)
@assert nr in graph.possibleOperations.nodeReductions "NodeReduction is not part of the graph's possible operations!"
#@assert nr in graph.possibleOperations.nodeReductions "NodeReduction is not part of the graph's possible operations!"
return true
end
@ -128,7 +128,7 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, ns::NodeSplit)
@assert is_valid_node_split_input(graph, ns.input)
@assert ns in graph.possibleOperations.nodeSplits "NodeSplit is not part of the graph's possible operations!"
#@assert ns in graph.possibleOperations.nodeSplits "NodeSplit is not part of the graph's possible operations!"
return true
end
@ -141,6 +141,6 @@ Intended for use with `@assert` or `@test`.
"""
function is_valid(graph::DAG, nf::NodeFusion)
@assert is_valid_node_fusion_input(graph, nf.input[1], nf.input[2], nf.input[3])
@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
#@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
return true
end

View File

@ -0,0 +1,73 @@
"""
GreedyOptimizer
An implementation of the greedy optimization algorithm, simply choosing the best next option evaluated with the given estimator.
The fixpoint is reached when any leftover operation would increase the graph's total cost according to the given estimator.
"""
struct GreedyOptimizer{EstimatorType <: AbstractEstimator} <: AbstractOptimizer
estimator::EstimatorType
end
function optimize_step!(optimizer::GreedyOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if isempty(operations)
return false
end
result = nothing
lowestCost = reduce(
(acc, op) -> begin
op_cost = operation_effect(optimizer.estimator, graph, op)
if op_cost < acc
result = op
return op_cost
end
return acc
end,
operations;
init = typemax(cost_type(optimizer.estimator)),
)
if lowestCost > zero(cost_type(optimizer.estimator))
return false
end
push_operation!(graph, result)
return true
end
function fixpoint_reached(optimizer::GreedyOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if isempty(operations)
return true
end
lowestCost = reduce(
(acc, op) -> begin
op_cost = operation_effect(optimizer.estimator, graph, op)
if op_cost < acc
return op_cost
end
return acc
end,
operations;
init = typemax(cost_type(optimizer.estimator)),
)
if lowestCost > zero(cost_type(optimizer.estimator))
return true
end
return false
end
function optimize_to_fixpoint!(optimizer::GreedyOptimizer, graph::DAG)
while optimize_step!(optimizer, graph)
end
return nothing
end

View File

@ -0,0 +1,60 @@
"""
AbstractOptimizer
Abstract base type for optimizer implementations.
"""
abstract type AbstractOptimizer end
"""
optimize_step!(optimizer::AbstractOptimizer, graph::DAG)
Interface function that must be implemented by implementations of [`AbstractOptimizer`](@ref). Returns `true` if an operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached.
It should do one smallest logical step on the given [`DAG`](@ref), muting the graph and, if necessary, the optimizer's state.
"""
function optimize_step! end
"""
optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int)
Function calling the given optimizer `n` times, muting the graph. Returns `true` if the requested number of operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached.
If a more efficient method exists, this can be overloaded for a specific optimizer.
"""
function optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int)
for i in 1:n
if !optimize_step!(optimizer, graph)
return false
end
end
return true
end
"""
fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG)
Interface function that can be implemented by optimization algorithms that can reach a fixpoint, returning as a `Bool` whether it has been reached. The default implementation returns `false`.
See also: [`optimize_to_fixpoint!`](@ref)
"""
function fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG)
return false
end
"""
optimize_to_fixpoint!(optimizer::AbstractOptimizer, graph::DAG)
Interface function that can be implemented by optimization algorithms that can reach a fixpoint. The algorithm will be run until that fixpoint is reached, at which point [`fixpoint_reached`](@ref) should return true.
A usual implementation might look like this:
```julia
function optimize_to_fixpoint!(optimizer::MyOptimizer, graph::DAG)
while !fixpoint_reached(optimizer, graph)
optimize_step!(optimizer, graph)
end
return nothing
end
```
"""
function optimize_to_fixpoint! end

View File

@ -0,0 +1,49 @@
using Random
"""
RandomWalkOptimizer
An optimizer that randomly pushes or pops operations. It doesn't optimize in any direction and is useful mainly for testing purposes.
This algorithm never reaches a fixpoint, so it does not implement [`optimize_to_fixpoint`](@ref).
"""
struct RandomWalkOptimizer <: AbstractOptimizer
rng::AbstractRNG
end
function optimize_step!(optimizer::RandomWalkOptimizer, graph::DAG)
operations = get_operations(graph)
if sum(length(operations)) == 0 && length(graph.appliedOperations) + length(graph.operationsToApply) == 0
# in case there are zero operations possible at all on the graph
return false
end
r = optimizer.rng
# try until something was applied or popped
while true
# choose push or pop
if rand(r, Bool)
# push
# choose one of fuse/split/reduce
option = rand(r, 1:3)
if option == 1 && !isempty(operations.nodeFusions)
push_operation!(graph, rand(r, collect(operations.nodeFusions)))
return true
elseif option == 2 && !isempty(operations.nodeReductions)
push_operation!(graph, rand(r, collect(operations.nodeReductions)))
return true
elseif option == 3 && !isempty(operations.nodeSplits)
push_operation!(graph, rand(r, collect(operations.nodeSplits)))
return true
end
else
# pop
if (can_pop(graph))
pop_operation!(graph)
return true
end
end
end
end

View File

@ -0,0 +1,30 @@
"""
ReductionOptimizer
An optimizer that simply applies an available [`NodeReduction`](@ref) on each step. It implements [`optimize_to_fixpoint`](@ref). The fixpoint is reached when there are no more possible [`NodeReduction`](@ref)s in the graph.
"""
struct ReductionOptimizer <: AbstractOptimizer end
function optimize_step!(optimizer::ReductionOptimizer, graph::DAG)
# generate all options
operations = get_operations(graph)
if fixpoint_reached(optimizer, graph)
return false
end
push_operation!(graph, first(operations.nodeReductions))
return true
end
function fixpoint_reached(optimizer::ReductionOptimizer, graph::DAG)
operations = get_operations(graph)
return isempty(operations.nodeReductions)
end
function optimize_to_fixpoint!(optimizer::ReductionOptimizer, graph::DAG)
while !fixpoint_reached(optimizer, graph)
optimize_step!(optimizer, graph)
end
return nothing
end

View File

@ -4,14 +4,18 @@
Create an empty [`GraphProperties`](@ref) object.
"""
function GraphProperties()
return (
data = 0.0,
computeEffort = 0.0,
computeIntensity = 0.0,
cost = 0.0,
noNodes = 0,
noEdges = 0,
)::GraphProperties
return (data = 0.0, computeEffort = 0.0, computeIntensity = 0.0, noNodes = 0, noEdges = 0)::GraphProperties
end
@inline function _props(
node::DataTaskNode{TaskType},
)::Tuple{Float64, Float64, Int64} where {TaskType <: AbstractDataTask}
return (data(task(node)) * length(parents(node)), 0.0, length(parents(node)))
end
@inline function _props(
node::ComputeTaskNode{TaskType},
)::Tuple{Float64, Float64, Int64} where {TaskType <: AbstractComputeTask}
return (0.0, compute_effort(task(node)), length(parents(node)))
end
"""
@ -27,16 +31,16 @@ function GraphProperties(graph::DAG)
ce = 0.0
ed = 0
for node in graph.nodes
d += data(node.task) * length(node.parents)
ce += compute_effort(node.task)
ed += length(node.parents)
props = _props(node)
d += props[1]
ce += props[2]
ed += props[3]
end
return (
data = d,
computeEffort = ce,
computeIntensity = (d == 0) ? 0.0 : ce / d,
cost = 0.0, # TODO
noNodes = length(graph.nodes),
noEdges = ed,
)::GraphProperties
@ -50,23 +54,18 @@ The graph's properties after applying the [`Diff`](@ref) will be `get_properties
For reverting a diff, it's `get_properties(graph) - GraphProperties(diff)`.
"""
function GraphProperties(diff::Diff)
d = 0.0
ce = 0.0
c = 0.0 # TODO
ce =
reduce(+, compute_effort(n.task) for n in diff.addedNodes; init = 0.0) -
reduce(+, compute_effort(n.task) for n in diff.removedNodes; init = 0.0)
reduce(+, compute_effort(task(n)) for n in diff.addedNodes; init = 0.0) -
reduce(+, compute_effort(task(n)) for n in diff.removedNodes; init = 0.0)
d =
reduce(+, data(e) for e in diff.addedEdges; init = 0.0) -
reduce(+, data(e) for e in diff.removedEdges; init = 0.0)
reduce(+, data(task(n)) for n in diff.addedNodes; init = 0.0) -
reduce(+, data(task(n)) for n in diff.removedNodes; init = 0.0)
return (
data = d,
computeEffort = ce,
computeIntensity = (d == 0) ? 0.0 : ce / d,
cost = c,
noNodes = length(diff.addedNodes) - length(diff.removedNodes),
noEdges = length(diff.addedEdges) - length(diff.removedEdges),
)::GraphProperties

View File

@ -7,11 +7,10 @@ Representation of a [`DAG`](@ref)'s properties.
`.data`: The total data transfer.\\
`.computeEffort`: The total compute effort.\\
`.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`.\\
`.cost`: The estimated cost.\\
`.noNodes`: Number of [`Node`](@ref)s.\\
`.noEdges`: Number of [`Edge`](@ref)s.
"""
const GraphProperties = NamedTuple{
(:data, :computeEffort, :computeIntensity, :cost, :noNodes, :noEdges),
Tuple{Float64, Float64, Float64, Float64, Int, Int},
(:data, :computeEffort, :computeIntensity, :noNodes, :noEdges),
Tuple{Float64, Float64, Float64, Int, Int},
}

View File

@ -13,7 +13,6 @@ function -(prop1::GraphProperties, prop2::GraphProperties)
else
(prop1.computeEffort - prop2.computeEffort) / (prop1.data - prop2.data)
end,
cost = prop1.cost - prop2.cost,
noNodes = prop1.noNodes - prop2.noNodes,
noEdges = prop1.noEdges - prop2.noEdges,
)::GraphProperties
@ -34,7 +33,6 @@ function +(prop1::GraphProperties, prop2::GraphProperties)
else
(prop1.computeEffort + prop2.computeEffort) / (prop1.data + prop2.data)
end,
cost = prop1.cost + prop2.cost,
noNodes = prop1.noNodes + prop2.noNodes,
noEdges = prop1.noEdges + prop2.noEdges,
)::GraphProperties
@ -50,7 +48,6 @@ function -(prop::GraphProperties)
data = -prop.data,
computeEffort = -prop.computeEffort,
computeIntensity = prop.computeIntensity, # no negation here!
cost = -prop.cost,
noNodes = -prop.noNodes,
noEdges = -prop.noEdges,
)::GraphProperties

View File

@ -32,14 +32,14 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
if (isa(node, ComputeTaskNode))
lowestDevice = peek(deviceAccCost)[1]
node.device = lowestDevice
deviceAccCost[lowestDevice] = compute_effort(node.task)
deviceAccCost[lowestDevice] = compute_effort(task(node))
end
push!(schedule, node)
for parent in node.parents
for parent in parents(node)
# reduce the priority of all parents by one
if (!haskey(nodeQueue, parent))
enqueue!(nodeQueue, parent => length(parent.children) - 1)
enqueue!(nodeQueue, parent => length(children(parent)) - 1)
else
nodeQueue[parent] = nodeQueue[parent] - 1
end

View File

@ -41,16 +41,16 @@ end
Generate and return code for a given [`ComputeTaskNode`](@ref).
"""
function get_expression(node::ComputeTaskNode)
@assert length(node.children) <= children(node.task) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(node.task))\nNode's children: $(getfield.(node.children, :children))"
@assert length(children(node)) <= children(task(node)) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(task(node)))\nNode's children: $(getfield.(node.children, :children))"
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
inExprs = Vector()
for id in getfield.(node.children, :id)
for id in getfield.(children(node), :id)
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
end
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
return get_expression(node.task, node.device, inExprs, outExpr)
return get_expression(task(node), node.device, inExprs, outExpr)
end
"""
@ -59,11 +59,11 @@ end
Generate and return code for a given [`DataTaskNode`](@ref).
"""
function get_expression(node::DataTaskNode)
@assert length(node.children) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
@assert length(children(node)) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
# TODO: dispatch to device implementations generating the copy commands
child = node.children[1]
child = children(node)[1]
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
dataTransportExp = Meta.parse("$outExpr = $inExpr")
@ -79,7 +79,7 @@ Generate and return code for the initial input reading expression for [`DataTask
See also: [`get_entry_nodes`](@ref)
"""
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
@assert isempty(node.children) "Trying to call get_init_expression on a data task node that is not an entry node."
@assert isempty(children(node)) "Trying to call get_init_expression on a data task node that is not an entry node."
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))

View File

@ -17,15 +17,16 @@ copy(t::AbstractComputeTask) = typeof(t)()
Return a copy of th egiven [`FusedComputeTask`](@ref).
"""
function copy(t::FusedComputeTask{T1, T2}) where {T1, T2}
return FusedComputeTask{T1, T2}(
copy(t.first_task),
copy(t.second_task),
copy(t.t1_inputs),
t.t1_output,
copy(t.t2_inputs),
)
function copy(t::FusedComputeTask)
return FusedComputeTask(copy(t.first_task), copy(t.second_task), copy(t.t1_inputs), t.t1_output, copy(t.t2_inputs))
end
FusedComputeTask{T1, T2}(t1_inputs::Vector{String}, t1_output::String, t2_inputs::Vector{String}) where {T1, T2} =
FusedComputeTask{T1, T2}(T1(), T2(), t1_inputs, t1_output, t2_inputs)
function FusedComputeTask(
T1::Type{<:AbstractComputeTask},
T2::Type{<:AbstractComputeTask},
t1_inputs::Vector{String},
t1_output::String,
t2_inputs::Vector{String},
)
return FusedComputeTask(T1(), T2(), t1_inputs, t1_output, t2_inputs)
end

View File

@ -30,7 +30,7 @@ compute(t::AbstractDataTask; data...) = data
Fallback implementation of the compute effort of a task, throwing an error.
"""
function compute_effort(t::AbstractTask)
function compute_effort(t::AbstractTask)::Float64
# default implementation using compute
return error("Need to implement compute_effort()")
end
@ -40,7 +40,7 @@ end
Fallback implementation of the data of a task, throwing an error.
"""
function data(t::AbstractTask)
function data(t::AbstractTask)::Float64
return error("Need to implement data()")
end
@ -49,28 +49,28 @@ end
Return the compute effort of a data task, always zero, regardless of the specific task.
"""
compute_effort(t::AbstractDataTask) = 0
compute_effort(t::AbstractDataTask)::Float64 = 0.0
"""
data(t::AbstractDataTask)
Return the data of a data task. Given by the task's `.data` field.
"""
data(t::AbstractDataTask) = getfield(t, :data)
data(t::AbstractDataTask)::Float64 = getfield(t, :data)
"""
data(t::AbstractComputeTask)
Return the data of a compute task, always zero, regardless of the specific task.
"""
data(t::AbstractComputeTask) = 0
data(t::AbstractComputeTask)::Float64 = 0.0
"""
compute_effort(t::FusedComputeTask)
Return the compute effort of a fused compute task.
"""
function compute_effort(t::FusedComputeTask)
function compute_effort(t::FusedComputeTask)::Float64
return compute_effort(t.first_task) + compute_effort(t.second_task)
end
@ -79,4 +79,4 @@ end
Return a tuple of a the fused compute task's components' types.
"""
get_types(::FusedComputeTask{T1, T2}) where {T1, T2} = (T1, T2)
get_types(t::FusedComputeTask) = (typeof(t.first_task), typeof(t.second_task))

View File

@ -26,9 +26,9 @@ A fused compute task made up of the computation of first `T1` and then `T2`.
Also see: [`get_types`](@ref).
"""
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <: AbstractComputeTask
first_task::T1
second_task::T2
struct FusedComputeTask <: AbstractComputeTask
first_task::AbstractComputeTask
second_task::AbstractComputeTask
# the names of the inputs for T1
t1_inputs::Vector{Symbol}
# output name of T1

View File

@ -3,9 +3,9 @@
Helper struct for [`NodeTrie`](@ref). After the Trie's first level, every Trie level contains the vector of nodes that had children up to that level, and the TrieNode's children by UUID of the node's children.
"""
mutable struct NodeIdTrie
value::Vector{Node}
children::Dict{UUID, NodeIdTrie}
mutable struct NodeIdTrie{NodeType <: Node}
value::Vector{NodeType}
children::Dict{UUID, NodeIdTrie{NodeType}}
end
"""
@ -35,8 +35,8 @@ end
Constructor for an empty [`NodeIdTrie`](@ref).
"""
function NodeIdTrie()
return NodeIdTrie(Vector{Node}(), Dict{UUID, NodeIdTrie}())
function NodeIdTrie{NodeType}() where {NodeType <: Node}
return NodeIdTrie(Vector{NodeType}(), Dict{UUID, NodeIdTrie{NodeType}}())
end
"""
@ -44,8 +44,12 @@ end
Insert the given node into the trie. The depth is used to iterate through the trie layers, while the function calls itself recursively until it ran through all children of the node.
"""
function insert_helper!(trie::NodeIdTrie, node::Node, depth::Int)
if (length(node.children) == depth)
function insert_helper!(
trie::NodeIdTrie{NodeType},
node::NodeType,
depth::Int,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
if (length(children(node)) == depth)
push!(trie.value, node)
return nothing
end
@ -54,7 +58,7 @@ function insert_helper!(trie::NodeIdTrie, node::Node, depth::Int)
id = node.children[depth].id
if (!haskey(trie.children, id))
trie.children[id] = NodeIdTrie()
trie.children[id] = NodeIdTrie{NodeType}()
end
return insert_helper!(trie.children[id], node, depth)
end
@ -64,12 +68,14 @@ end
Insert the given node into the trie. It's sorted by its type in the first layer, then by its children in the following layers.
"""
function insert!(trie::NodeTrie, node::Node)
t = typeof(node.task)
if (!haskey(trie.children, t))
trie.children[t] = NodeIdTrie()
function insert!(
trie::NodeTrie,
node::NodeType,
) where {TaskType <: AbstractTask, NodeType <: Union{DataTaskNode{TaskType}, ComputeTaskNode{TaskType}}}
if (!haskey(trie.children, NodeType))
trie.children[NodeType] = NodeIdTrie{NodeType}()
end
return insert_helper!(trie.children[typeof(node.task)], node, 0)
return insert_helper!(trie.children[NodeType], node, 0)
end
"""

View File

@ -36,8 +36,8 @@ Sort the nodes' parents and children vectors. The vectors are mostly very short
Sorted nodes are required to make the finding of [`NodeReduction`](@ref)s a lot faster using the [`NodeTrie`](@ref) data structure.
"""
function sort_node!(node::Node)
sort!(node.children, lt = lt_nodes)
return sort!(node.parents, lt = lt_nodes)
sort!(children(node), lt = lt_nodes)
return sort!(parents(node), lt = lt_nodes)
end
"""

View File

@ -1,4 +1,6 @@
[deps]
AccurateArithmetic = "22286c92-06ac-501d-9306-4abd417d9753"
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

View File

@ -1,3 +1,4 @@
using MetagraphOptimization
using Random
function test_known_graph(name::String, n, fusion_test = true)
@ -88,9 +89,6 @@ end
Random.seed!(0)
@testset "Test Known ABC-Graphs" begin
test_known_graph("AB->AB", 10000)
test_known_graph("AB->ABBB", 10000)
test_known_graph("AB->ABBBBB", 1000, false)
end
println("Known Graph Testing Complete!")
test_known_graph("AB->AB", 10000)
test_known_graph("AB->ABBB", 10000)
test_known_graph("AB->ABBBBB", 1000, false)

View File

@ -1,99 +1,98 @@
using MetagraphOptimization
import MetagraphOptimization.insert_node!
import MetagraphOptimization.insert_edge!
import MetagraphOptimization.make_node
@testset "Unit Tests Node Reduction" begin
graph = MetagraphOptimization.DAG()
graph = MetagraphOptimization.DAG()
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
ED = insert_node!(graph, make_node(DataTask(3)), track = false)
FD = insert_node!(graph, make_node(DataTask(3)), track = false)
ED = insert_node!(graph, make_node(DataTask(3)), track = false)
FD = insert_node!(graph, make_node(DataTask(3)), track = false)
EC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
FC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
EC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
FC = insert_node!(graph, make_node(ComputeTaskV()), track = false)
A1D = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), track = false)
C1D = insert_node!(graph, make_node(DataTask(4)), track = false)
A1D = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_1 = insert_node!(graph, make_node(DataTask(4)), track = false)
B1D_2 = insert_node!(graph, make_node(DataTask(4)), track = false)
C1D = insert_node!(graph, make_node(DataTask(4)), track = false)
A1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
C1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
A1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_1 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
B1C_2 = insert_node!(graph, make_node(ComputeTaskU()), track = false)
C1C = insert_node!(graph, make_node(ComputeTaskU()), track = false)
AD = insert_node!(graph, make_node(DataTask(5)), track = false)
BD = insert_node!(graph, make_node(DataTask(5)), track = false)
CD = insert_node!(graph, make_node(DataTask(5)), track = false)
AD = insert_node!(graph, make_node(DataTask(5)), track = false)
BD = insert_node!(graph, make_node(DataTask(5)), track = false)
CD = insert_node!(graph, make_node(DataTask(5)), track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, ED, s0, track = false)
insert_edge!(graph, FD, s0, track = false)
insert_edge!(graph, EC, ED, track = false)
insert_edge!(graph, FC, FD, track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, ED, s0, track = false)
insert_edge!(graph, FD, s0, track = false)
insert_edge!(graph, EC, ED, track = false)
insert_edge!(graph, FC, FD, track = false)
insert_edge!(graph, A1D, EC, track = false)
insert_edge!(graph, B1D_1, EC, track = false)
insert_edge!(graph, A1D, EC, track = false)
insert_edge!(graph, B1D_1, EC, track = false)
insert_edge!(graph, B1D_2, FC, track = false)
insert_edge!(graph, C1D, FC, track = false)
insert_edge!(graph, B1D_2, FC, track = false)
insert_edge!(graph, C1D, FC, track = false)
insert_edge!(graph, A1C, A1D, track = false)
insert_edge!(graph, B1C_1, B1D_1, track = false)
insert_edge!(graph, B1C_2, B1D_2, track = false)
insert_edge!(graph, C1C, C1D, track = false)
insert_edge!(graph, A1C, A1D, track = false)
insert_edge!(graph, B1C_1, B1D_1, track = false)
insert_edge!(graph, B1C_2, B1D_2, track = false)
insert_edge!(graph, C1C, C1D, track = false)
insert_edge!(graph, AD, A1C, track = false)
insert_edge!(graph, BD, B1C_1, track = false)
insert_edge!(graph, BD, B1C_2, track = false)
insert_edge!(graph, CD, C1C, track = false)
insert_edge!(graph, AD, A1C, track = false)
insert_edge!(graph, BD, B1C_1, track = false)
insert_edge!(graph, BD, B1C_2, track = false)
insert_edge!(graph, CD, C1C, track = false)
@test is_valid(graph)
@test is_valid(graph)
@test is_exit_node(d_exit)
@test is_entry_node(AD)
@test is_entry_node(BD)
@test is_entry_node(CD)
@test is_exit_node(d_exit)
@test is_entry_node(AD)
@test is_entry_node(BD)
@test is_entry_node(CD)
opt = get_operations(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("Initial State:\n", opt)
#println("Initial State:\n", opt)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1C_1, B1C_2])
push_operation!(graph, nr)
opt = get_operations(graph)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1C_1, B1C_2])
push_operation!(graph, nr)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After 1 Node Reduction:\n", opt)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After 1 Node Reduction:\n", opt)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1D_1, B1D_2])
push_operation!(graph, nr)
opt = get_operations(graph)
nr = first(opt.nodeReductions)
@test Set(nr.input) == Set([B1D_1, B1D_2])
push_operation!(graph, nr)
opt = get_operations(graph)
@test is_valid(graph)
@test is_valid(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 0, nodeSplits = 1)
#println("After 2 Node Reductions:\n", opt)
@test length(opt) == (nodeFusions = 4, nodeReductions = 0, nodeSplits = 1)
#println("After 2 Node Reductions:\n", opt)
pop_operation!(graph)
pop_operation!(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After reverting the second Node Reduction:\n", opt)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 4, nodeReductions = 1, nodeSplits = 1)
#println("After reverting the second Node Reduction:\n", opt)
reset_graph!(graph)
reset_graph!(graph)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("After reverting to the initial state:\n", opt)
opt = get_operations(graph)
@test length(opt) == (nodeFusions = 6, nodeReductions = 1, nodeSplits = 1)
#println("After reverting to the initial state:\n", opt)
@test is_valid(graph)
end
println("Node Reduction Unit Tests Complete!")
@test is_valid(graph)

View File

@ -1,14 +1,35 @@
using MetagraphOptimization
using Test
using SafeTestsets
@testset "MetagraphOptimization Tests" begin
@safetestset "Utility Unit Tests" begin
include("unit_tests_utility.jl")
end
@safetestset "Task Unit Tests" begin
include("unit_tests_tasks.jl")
end
@safetestset "Node Unit Tests" begin
include("unit_tests_nodes.jl")
end
@safetestset "Properties Unit Tests" begin
include("unit_tests_properties.jl")
end
@safetestset "Estimation Unit Tests" begin
include("unit_tests_estimator.jl")
end
@safetestset "ABC-Model Unit Tests" begin
include("unit_tests_abcmodel.jl")
end
@safetestset "Node Reduction Unit Tests" begin
include("node_reduction.jl")
end
@safetestset "Graph Unit Tests" begin
include("unit_tests_graph.jl")
end
@safetestset "Execution Unit Tests" begin
include("unit_tests_execution.jl")
end
@safetestset "Optimization Unit Tests" begin
include("unit_tests_optimization.jl")
end
@safetestset "Known Graph Tests" begin
include("known_graphs.jl")
end

View File

@ -0,0 +1,23 @@
using MetagraphOptimization
using QEDbase
import MetagraphOptimization.interaction_result
def_momentum = SFourMomentum(1.0, 0.0, 0.0, 0.0)
testparticleTypes = [ParticleA, ParticleB, ParticleC]
testparticles = [ParticleA(def_momentum), ParticleB(def_momentum), ParticleC(def_momentum)]
@testset "Interaction Result" begin
for p1 in testparticleTypes, p2 in testparticleTypes
if (p1 == p2)
@test_throws AssertionError interaction_result(p1, p2)
else
@test interaction_result(p1, p2) == setdiff(testparticleTypes, [p1, p2])[1]
end
end
end
@testset "Vertex" begin
@test isapprox(MetagraphOptimization.vertex(), 1 / 137.0)
end

View File

@ -0,0 +1,91 @@
using MetagraphOptimization
function test_op_specific(estimator, graph, nf::NodeFusion)
estimate = operation_effect(estimator, graph, nf)
data_reduce = data(nf.input[2].task)
@test isapprox(estimate.data, -data_reduce)
@test isapprox(estimate.computeEffort, 0; atol = eps(Float64))
@test isapprox(estimate.computeIntensity, 0; atol = eps(Float64))
return nothing
end
function test_op_specific(estimator, graph, nr::NodeReduction)
estimate = operation_effect(estimator, graph, nr)
data_reduce = data(nr.input[1].task) * (length(nr.input) - 1)
compute_effort_reduce = compute_effort(nr.input[1].task) * (length(nr.input) - 1)
@test isapprox(estimate.data, -data_reduce; atol = eps(Float64))
@test isapprox(estimate.computeEffort, -compute_effort_reduce)
@test isapprox(estimate.computeIntensity, compute_effort_reduce / data_reduce)
return nothing
end
function test_op_specific(estimator, graph, ns::NodeSplit)
estimate = operation_effect(estimator, graph, ns)
copies = length(ns.input.parents) - 1
data_increase = data(ns.input.task) * copies
compute_effort_increase = compute_effort(ns.input.task) * copies
@test isapprox(estimate.data, data_increase; atol = eps(Float64))
@test isapprox(estimate.computeEffort, compute_effort_increase)
@test isapprox(estimate.computeIntensity, compute_effort_increase / data_increase)
return nothing
end
function test_op(estimator, graph, op)
estimate_before = graph_cost(estimator, graph)
estimate = operation_effect(estimator, graph, op)
push_operation!(graph, op)
estimate_after_apply = graph_cost(estimator, graph)
reset_graph!(graph)
@test isapprox((estimate_before + estimate).data, estimate_after_apply.data)
@test isapprox((estimate_before + estimate).computeEffort, estimate_after_apply.computeEffort)
@test isapprox((estimate_before + estimate).computeIntensity, estimate_after_apply.computeIntensity)
test_op_specific(estimator, graph, op)
return nothing
end
@testset "Global Metric Estimator" for (graph_string, exp_data, exp_computeEffort) in
zip(["AB->AB", "AB->ABBB"], [976, 10944], [53, 1075])
estimator = GlobalMetricEstimator()
@test cost_type(estimator) == CDCost
graph = parse_dag(joinpath(@__DIR__, "..", "input", "$(graph_string).txt"), ABCModel())
@testset "Graph Cost" begin
estimate = graph_cost(estimator, graph)
@test estimate.data == exp_data
@test estimate.computeEffort == exp_computeEffort
@test isapprox(estimate.computeIntensity, exp_computeEffort / exp_data)
end
@testset "Operation Cost" begin
ops = get_operations(graph)
nfs = copy(ops.nodeFusions)
nrs = copy(ops.nodeReductions)
nss = copy(ops.nodeSplits)
for nf in nfs
test_op(estimator, graph, nf)
end
for nr in nrs
test_op(estimator, graph, nr)
end
for ns in nss
test_op(estimator, graph, ns)
end
end
end

View File

@ -1,177 +1,216 @@
import MetagraphOptimization.ABCParticle
using MetagraphOptimization
using QEDbase
using AccurateArithmetic
using Random
include("../examples/profiling_utilities.jl")
import MetagraphOptimization.ABCParticle
import MetagraphOptimization.interaction_result
@testset "Unit Tests Execution" begin
machine = get_machine_info()
process_2_2 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
)
particles_2_2 = ABCProcessInput(
process_2_2,
ABCParticle[
ParticleA(SFourMomentum(0.823648, 0.0, 0.0, 0.823648)),
ParticleB(SFourMomentum(0.823648, 0.0, 0.0, -0.823648)),
],
ABCParticle[
ParticleA(SFourMomentum(0.823648, -0.835061, -0.474802, 0.277915)),
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
],
)
expected_result = 0.00013916495566048735
@testset "AB->AB no optimization" begin
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
func = get_compute_function(graph, process_2_2, machine)
@test isapprox(func(particles_2_2), expected_result; rtol = 0.001)
end
end
@testset "AB->AB after random walk" begin
for i in 1:1000
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
random_walk!(graph, 50)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
end
end
process_2_4 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 3),
)
particles_2_4 = gen_process_input(process_2_4)
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
expected_result = execute(graph, process_2_4, machine, particles_2_4)
@testset "AB->ABBB no optimization" begin
for _ in 1:5 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
func = get_compute_function(graph, process_2_4, machine)
@test isapprox(func(particles_2_4), expected_result; rtol = 0.001)
end
end
@testset "AB->ABBB after random walk" begin
for i in 1:200
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
random_walk!(graph, 100)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
end
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
@testset "AB->AB fusion edge case" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push two fusions with ComputeTaskV
for _ in 1:2
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, ComputeTaskV)
push_operation!(graph, fusion)
break
end
end
end
# push fusions until the end
cont = true
while cont
cont = false
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, FusedComputeTask)
push_operation!(graph, fusion)
cont = true
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = 0.00013916495566048735
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
end
const RTOL = sqrt(eps(Float64))
RNG = Random.default_rng()
function check_particle_reverse_moment(p1::SFourMomentum, p2::SFourMomentum)
@test isapprox(abs(p1.E), abs(p2.E))
@test isapprox(p1.px, -p2.px)
@test isapprox(p1.py, -p2.py)
@test isapprox(p1.pz, -p2.pz)
return nothing
end
function ground_truth_graph_result(input::ABCProcessInput)
# formula for one diagram:
# u_Bp * iλ * u_Ap * S_C * u_B * iλ * u_A
# for the second diagram:
# u_B * iλ * u_Ap * S_C * u_Bp * iλ * u_Ap
# the "u"s are all 1, we ignore the i, λ is 1/137.
constant = (1 / 137.0)^2
# calculate particle C in diagram 1
diagram1_C = ParticleC(input.inParticles[1].momentum + input.inParticles[2].momentum)
diagram2_C = ParticleC(input.inParticles[1].momentum + input.outParticles[2].momentum)
diagram1_Cp = ParticleC(input.outParticles[1].momentum + input.outParticles[2].momentum)
diagram2_Cp = ParticleC(input.outParticles[1].momentum + input.inParticles[2].momentum)
check_particle_reverse_moment(diagram1_Cp.momentum, diagram1_C.momentum)
check_particle_reverse_moment(diagram2_Cp.momentum, diagram2_C.momentum)
@test isapprox(getMass2(diagram1_C.momentum), getMass2(diagram1_Cp.momentum))
@test isapprox(getMass2(diagram2_C.momentum), getMass2(diagram2_Cp.momentum))
inner1 = MetagraphOptimization.inner_edge(diagram1_C)
inner2 = MetagraphOptimization.inner_edge(diagram2_C)
diagram1_result = inner1 * constant
diagram2_result = inner2 * constant
return sum_kbn([diagram1_result, diagram2_result])
end
machine = get_machine_info()
process_2_2 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
)
particles_2_2 = ABCProcessInput(
process_2_2,
ABCParticle[
ParticleA(SFourMomentum(0.823648, 0.0, 0.0, 0.823648)),
ParticleB(SFourMomentum(0.823648, 0.0, 0.0, -0.823648)),
],
ABCParticle[
ParticleA(SFourMomentum(0.823648, -0.835061, -0.474802, 0.277915)),
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
],
)
expected_result = ground_truth_graph_result(particles_2_2)
@testset "AB->AB no optimization" begin
for _ in 1:10 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
func = get_compute_function(graph, process_2_2, machine)
@test isapprox(func(particles_2_2), expected_result; rtol = RTOL)
end
end
@testset "AB->AB after random walk" begin
for i in 1:200
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
optimize!(RandomWalkOptimizer(RNG), graph, 50)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
# graph should be fully scheduled after being executed
@test is_scheduled(graph)
end
end
process_2_4 = ABCProcessDescription(
Dict{Type, Int64}(ParticleA => 1, ParticleB => 1),
Dict{Type, Int64}(ParticleA => 1, ParticleB => 3),
)
particles_2_4 = gen_process_input(process_2_4)
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
expected_result = execute(graph, process_2_4, machine, particles_2_4)
@testset "AB->ABBB no optimization" begin
for _ in 1:5 # test in a loop because graph layout should not change the result
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
func = get_compute_function(graph, process_2_4, machine)
@test isapprox(func(particles_2_4), expected_result; rtol = RTOL)
end
end
@testset "AB->ABBB after random walk" begin
for i in 1:50
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
optimize!(RandomWalkOptimizer(RNG), graph, 100)
@test is_valid(graph)
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
end
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
@testset "AB->AB large sum fusion" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push a fusion with the sum node
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, ComputeTaskSum)
push_operation!(graph, fusion)
break
end
end
# push two more fusions with the fused node
for _ in 1:15
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[3].task, FusedComputeTask)
push_operation!(graph, fusion)
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
@testset "AB->AB fusion edge case" for _ in 1:20
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
# push two fusions with ComputeTaskV
for _ in 1:2
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, ComputeTaskV)
push_operation!(graph, fusion)
break
end
end
end
# push fusions until the end
cont = true
while cont
cont = false
ops = get_operations(graph)
for fusion in ops.nodeFusions
if isa(fusion.input[1].task, FusedComputeTask)
push_operation!(graph, fusion)
cont = true
break
end
end
end
# try execute
@test is_valid(graph)
expected_result = ground_truth_graph_result(particles_2_2)
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
end
println("Execution Unit Tests Complete!")

View File

@ -1,212 +1,213 @@
using MetagraphOptimization
import MetagraphOptimization.insert_node!
import MetagraphOptimization.insert_edge!
import MetagraphOptimization.make_node
import MetagraphOptimization.siblings
import MetagraphOptimization.partners
@testset "Unit Tests Graph" begin
graph = MetagraphOptimization.DAG()
graph = MetagraphOptimization.DAG()
@test length(graph.nodes) == 0
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.nodes) == 0
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(get_operations(graph)) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(10)), track = false)
@test length(graph.nodes) == 1
@test length(graph.dirtyNodes) == 1
@test length(graph.nodes) == 1
@test length(graph.dirtyNodes) == 1
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskS2()), track = false)
@test length(graph.nodes) == 2
@test length(graph.dirtyNodes) == 2
@test length(graph.nodes) == 2
@test length(graph.dirtyNodes) == 2
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(5)), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskV()), track = false)
# data from uB, uA, uBp and uAp to v0 and v1
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
# data from uB, uA, uBp and uAp to v0 and v1
d_uB_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uA_v0 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uBp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
d_uAp_v1 = insert_node!(graph, make_node(DataTask(3)), track = false)
# uB, uA, uBp and uAp computes
uB = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uA = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uBp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uAp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
# uB, uA, uBp and uAp computes
uB = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uA = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uBp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
uAp = insert_node!(graph, make_node(ComputeTaskU()), track = false)
# data from PB, PA, PBp and PAp to uB, uA, uBp and uAp
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), track = false)
# data from PB, PA, PBp and PAp to uB, uA, uBp and uAp
d_PB_uB = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PA_uA = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PBp_uBp = insert_node!(graph, make_node(DataTask(6)), track = false)
d_PAp_uAp = insert_node!(graph, make_node(DataTask(6)), track = false)
# P computes PB, PA, PBp and PAp
PB = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PA = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PBp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PAp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
# P computes PB, PA, PBp and PAp
PB = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PA = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PBp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
PAp = insert_node!(graph, make_node(ComputeTaskP()), track = false)
# entry nodes getting data for P computes
d_PB = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PA = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), track = false)
# entry nodes getting data for P computes
d_PB = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PA = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PBp = insert_node!(graph, make_node(DataTask(4)), track = false)
d_PAp = insert_node!(graph, make_node(DataTask(4)), track = false)
@test length(graph.nodes) == 26
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.dirtyNodes) == 26
# now for all the edges
insert_edge!(graph, d_PB, PB, track = false)
insert_edge!(graph, d_PA, PA, track = false)
insert_edge!(graph, d_PBp, PBp, track = false)
insert_edge!(graph, d_PAp, PAp, track = false)
# now for all the edges
insert_edge!(graph, d_PB, PB, track = false)
insert_edge!(graph, d_PA, PA, track = false)
insert_edge!(graph, d_PBp, PBp, track = false)
insert_edge!(graph, d_PAp, PAp, track = false)
insert_edge!(graph, PB, d_PB_uB, track = false)
insert_edge!(graph, PA, d_PA_uA, track = false)
insert_edge!(graph, PBp, d_PBp_uBp, track = false)
insert_edge!(graph, PAp, d_PAp_uAp, track = false)
insert_edge!(graph, PB, d_PB_uB, track = false)
insert_edge!(graph, PA, d_PA_uA, track = false)
insert_edge!(graph, PBp, d_PBp_uBp, track = false)
insert_edge!(graph, PAp, d_PAp_uAp, track = false)
insert_edge!(graph, d_PB_uB, uB, track = false)
insert_edge!(graph, d_PA_uA, uA, track = false)
insert_edge!(graph, d_PBp_uBp, uBp, track = false)
insert_edge!(graph, d_PAp_uAp, uAp, track = false)
insert_edge!(graph, d_PB_uB, uB, track = false)
insert_edge!(graph, d_PA_uA, uA, track = false)
insert_edge!(graph, d_PBp_uBp, uBp, track = false)
insert_edge!(graph, d_PAp_uAp, uAp, track = false)
insert_edge!(graph, uB, d_uB_v0, track = false)
insert_edge!(graph, uA, d_uA_v0, track = false)
insert_edge!(graph, uBp, d_uBp_v1, track = false)
insert_edge!(graph, uAp, d_uAp_v1, track = false)
insert_edge!(graph, uB, d_uB_v0, track = false)
insert_edge!(graph, uA, d_uA_v0, track = false)
insert_edge!(graph, uBp, d_uBp_v1, track = false)
insert_edge!(graph, uAp, d_uAp_v1, track = false)
insert_edge!(graph, d_uB_v0, v0, track = false)
insert_edge!(graph, d_uA_v0, v0, track = false)
insert_edge!(graph, d_uBp_v1, v1, track = false)
insert_edge!(graph, d_uAp_v1, v1, track = false)
insert_edge!(graph, d_uB_v0, v0, track = false)
insert_edge!(graph, d_uA_v0, v0, track = false)
insert_edge!(graph, d_uBp_v1, v1, track = false)
insert_edge!(graph, d_uAp_v1, v1, track = false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, s0, d_exit, track = false)
insert_edge!(graph, s0, d_exit, track = false)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 26
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) == 26
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test is_valid(graph)
@test is_valid(graph)
@test is_entry_node(d_PB)
@test is_entry_node(d_PA)
@test is_entry_node(d_PBp)
@test is_entry_node(d_PBp)
@test !is_entry_node(PB)
@test !is_entry_node(v0)
@test !is_entry_node(d_exit)
@test is_entry_node(d_PB)
@test is_entry_node(d_PA)
@test is_entry_node(d_PBp)
@test is_entry_node(d_PBp)
@test !is_entry_node(PB)
@test !is_entry_node(v0)
@test !is_entry_node(d_exit)
@test is_exit_node(d_exit)
@test !is_exit_node(d_uB_v0)
@test !is_exit_node(v0)
@test is_exit_node(d_exit)
@test !is_exit_node(d_uB_v0)
@test !is_exit_node(v0)
@test length(children(v0)) == 2
@test length(children(v1)) == 2
@test length(parents(v0)) == 1
@test length(parents(v1)) == 1
@test length(children(v0)) == 2
@test length(children(v1)) == 2
@test length(parents(v0)) == 1
@test length(parents(v1)) == 1
@test MetagraphOptimization.get_exit_node(graph) == d_exit
@test MetagraphOptimization.get_exit_node(graph) == d_exit
@test length(partners(s0)) == 1
@test length(siblings(s0)) == 1
@test length(partners(s0)) == 1
@test length(siblings(s0)) == 1
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test operations == get_operations(graph)
nf = first(operations.nodeFusions)
@test sum(length(operations)) == 10
properties = get_properties(graph)
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
@test properties.noNodes == 26
@test properties.noEdges == 25
@test operations == get_operations(graph)
nf = first(operations.nodeFusions)
push_operation!(graph, nf)
# **does not immediately apply the operation**
properties = get_properties(graph)
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
@test properties.noNodes == 26
@test properties.noEdges == 25
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 1
@test first(graph.operationsToApply) == nf
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
push_operation!(graph, nf)
# **does not immediately apply the operation**
# this applies pending operations
properties = get_properties(graph)
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 1
@test first(graph.operationsToApply) == nf
@test length(graph.dirtyNodes) == 0
@test length(graph.diff) == (addedNodes = 0, removedNodes = 0, addedEdges = 0, removedEdges = 0)
@test length(graph.nodes) == 24
@test length(graph.appliedOperations) == 1
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) != 0
@test properties.noNodes == 24
@test properties.noEdges == 23
@test properties.computeEffort == 28
@test properties.data < 62
@test properties.computeIntensity > 28 / 62
# this applies pending operations
properties = get_properties(graph)
operations = get_operations(graph)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 24
@test length(graph.appliedOperations) == 1
@test length(graph.operationsToApply) == 0
@test length(graph.dirtyNodes) != 0
@test properties.noNodes == 24
@test properties.noEdges == 23
@test properties.computeEffort == 28
@test properties.data < 62
@test properties.computeIntensity > 28 / 62
@test length(operations) == (nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test !isempty(operations)
operations = get_operations(graph)
@test length(graph.dirtyNodes) == 0
possibleNF = 9
while !isempty(operations.nodeFusions)
push_operation!(graph, first(operations.nodeFusions))
operations = get_operations(graph)
possibleNF = possibleNF - 1
@test length(operations) == (nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
end
@test length(operations) == (nodeFusions = 9, nodeReductions = 0, nodeSplits = 0)
@test !isempty(operations)
@test isempty(operations)
@test length(operations) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 6
@test length(graph.appliedOperations) == 10
@test length(graph.operationsToApply) == 0
reset_graph!(graph)
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
properties = get_properties(graph)
@test properties.noNodes == 26
@test properties.noEdges == 25
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test is_valid(graph)
possibleNF = 9
while !isempty(operations.nodeFusions)
push_operation!(graph, first(operations.nodeFusions))
global operations = get_operations(graph)
global possibleNF = possibleNF - 1
@test length(operations) == (nodeFusions = possibleNF, nodeReductions = 0, nodeSplits = 0)
end
println("Graph Unit Tests Complete!")
@test isempty(operations)
@test length(operations) == (nodeFusions = 0, nodeReductions = 0, nodeSplits = 0)
@test length(graph.dirtyNodes) == 0
@test length(graph.nodes) == 6
@test length(graph.appliedOperations) == 10
@test length(graph.operationsToApply) == 0
reset_graph!(graph)
@test length(graph.dirtyNodes) == 26
@test length(graph.nodes) == 26
@test length(graph.appliedOperations) == 0
@test length(graph.operationsToApply) == 0
properties = get_properties(graph)
@test properties.noNodes == 26
@test properties.noEdges == 25
@test properties.computeEffort == 28
@test properties.data == 62
@test properties.computeIntensity 28 / 62
operations = get_operations(graph)
@test length(operations) == (nodeFusions = 10, nodeReductions = 0, nodeSplits = 0)
@test is_valid(graph)

View File

@ -1,36 +1,34 @@
using MetagraphOptimization
@testset "Unit Tests Nodes" begin
nC1 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskU())
nC2 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskV())
nC3 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskP())
nC4 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskSum())
nC1 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskU())
nC2 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskV())
nC3 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskP())
nC4 = MetagraphOptimization.make_node(MetagraphOptimization.ComputeTaskSum())
nD1 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
nD2 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(20))
nD1 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
nD2 = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(20))
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC2)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC3, nC4)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD2)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC2)
@test_throws ErrorException MetagraphOptimization.make_edge(nC1, nC1)
@test_throws ErrorException MetagraphOptimization.make_edge(nC3, nC4)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD2)
@test_throws ErrorException MetagraphOptimization.make_edge(nD1, nD1)
ed1 = MetagraphOptimization.make_edge(nC1, nD1)
ed2 = MetagraphOptimization.make_edge(nD1, nC2)
ed3 = MetagraphOptimization.make_edge(nC2, nD2)
ed4 = MetagraphOptimization.make_edge(nD2, nC3)
ed1 = MetagraphOptimization.make_edge(nC1, nD1)
ed2 = MetagraphOptimization.make_edge(nD1, nC2)
ed3 = MetagraphOptimization.make_edge(nC2, nD2)
ed4 = MetagraphOptimization.make_edge(nD2, nC3)
@test nC1 != nC2
@test nD1 != nD2
@test nC1 != nD1
@test nC3 != nC4
@test nC1 != nC2
@test nD1 != nD2
@test nC1 != nD1
@test nC3 != nC4
nC1_2 = copy(nC1)
@test nC1_2 != nC1
nC1_2 = copy(nC1)
@test nC1_2 != nC1
nD1_2 = copy(nD1)
@test nD1_2 != nD1
nD1_2 = copy(nD1)
@test nD1_2 != nD1
nD1_c = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
@test nD1_c != nD1
end
println("Node Unit Tests Complete!")
nD1_c = MetagraphOptimization.make_node(MetagraphOptimization.DataTask(10))
@test nD1_c != nD1

View File

@ -0,0 +1,40 @@
using MetagraphOptimization
using Random
RNG = Random.default_rng()
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
# create the optimizers
FIXPOINT_OPTIMIZERS = [GreedyOptimizer(GlobalMetricEstimator()), ReductionOptimizer()]
NO_FIXPOINT_OPTIMIZERS = [RandomWalkOptimizer(RNG)]
@testset "Optimizer $optimizer" for optimizer in vcat(NO_FIXPOINT_OPTIMIZERS, FIXPOINT_OPTIMIZERS)
@test operation_stack_length(graph) == 0
@test optimize_step!(optimizer, graph)
@test !fixpoint_reached(optimizer, graph)
@test operation_stack_length(graph) == 1
@test optimize!(optimizer, graph, 10)
@test !fixpoint_reached(optimizer, graph)
reset_graph!(graph)
end
@testset "Fixpoint optimizer $optimizer" for optimizer in FIXPOINT_OPTIMIZERS
@test operation_stack_length(graph) == 0
optimize_to_fixpoint!(optimizer, graph)
@test fixpoint_reached(optimizer, graph)
@test !optimize_step!(optimizer, graph)
@test !optimize!(optimizer, graph, 10)
reset_graph!(graph)
end
@testset "No fixpoint optimizer $optimizer" for optimizer in NO_FIXPOINT_OPTIMIZERS
@test_throws MethodError optimize_to_fixpoint!(optimizer, graph)
end

View File

@ -1,52 +1,33 @@
using MetagraphOptimization
@testset "GraphProperties Unit Tests" begin
prop = GraphProperties()
prop = GraphProperties()
@test prop.data == 0.0
@test prop.computeEffort == 0.0
@test prop.computeIntensity == 0.0
@test prop.cost == 0.0
@test prop.noNodes == 0.0
@test prop.noEdges == 0.0
@test prop.data == 0.0
@test prop.computeEffort == 0.0
@test prop.computeIntensity == 0.0
@test prop.noNodes == 0.0
@test prop.noEdges == 0.0
prop2 = (
data = 5.0,
computeEffort = 6.0,
computeIntensity = 6.0 / 5.0,
cost = 0.0,
noNodes = 2,
noEdges = 3,
)::GraphProperties
prop2 = (data = 5.0, computeEffort = 6.0, computeIntensity = 6.0 / 5.0, noNodes = 2, noEdges = 3)::GraphProperties
@test prop + prop2 == prop2
@test prop2 - prop == prop2
@test prop + prop2 == prop2
@test prop2 - prop == prop2
negProp = -prop2
@test negProp.data == -5.0
@test negProp.computeEffort == -6.0
@test negProp.computeIntensity == 6.0 / 5.0
@test negProp.cost == 0.0
@test negProp.noNodes == -2
@test negProp.noEdges == -3
negProp = -prop2
@test negProp.data == -5.0
@test negProp.computeEffort == -6.0
@test negProp.computeIntensity == 6.0 / 5.0
@test negProp.noNodes == -2
@test negProp.noEdges == -3
@test negProp + prop2 == GraphProperties()
@test negProp + prop2 == GraphProperties()
prop3 = (
data = 7.0,
computeEffort = 3.0,
computeIntensity = 7.0 / 3.0,
cost = 0.0,
noNodes = -3,
noEdges = 2,
)::GraphProperties
prop3 = (data = 7.0, computeEffort = 3.0, computeIntensity = 7.0 / 3.0, noNodes = -3, noEdges = 2)::GraphProperties
propSum = prop2 + prop3
propSum = prop2 + prop3
@test propSum.data == 12.0
@test propSum.computeEffort == 9.0
@test propSum.computeIntensity == 9.0 / 12.0
@test propSum.cost == 0.0
@test propSum.noNodes == -1
@test propSum.noEdges == 5
end
println("GraphProperties Unit Tests Complete!")
@test propSum.data == 12.0
@test propSum.computeEffort == 9.0
@test propSum.computeIntensity == 9.0 / 12.0
@test propSum.noNodes == -1
@test propSum.noEdges == 5

View File

@ -1,51 +1,49 @@
using MetagraphOptimization
@testset "Task Unit Tests" begin
S1 = MetagraphOptimization.ComputeTaskS1()
S2 = MetagraphOptimization.ComputeTaskS2()
U = MetagraphOptimization.ComputeTaskU()
V = MetagraphOptimization.ComputeTaskV()
P = MetagraphOptimization.ComputeTaskP()
Sum = MetagraphOptimization.ComputeTaskSum()
S1 = MetagraphOptimization.ComputeTaskS1()
S2 = MetagraphOptimization.ComputeTaskS2()
U = MetagraphOptimization.ComputeTaskU()
V = MetagraphOptimization.ComputeTaskV()
P = MetagraphOptimization.ComputeTaskP()
Sum = MetagraphOptimization.ComputeTaskSum()
Data10 = MetagraphOptimization.DataTask(10)
Data20 = MetagraphOptimization.DataTask(20)
Data10 = MetagraphOptimization.DataTask(10)
Data20 = MetagraphOptimization.DataTask(20)
@test MetagraphOptimization.compute_effort(S1) == 11
@test MetagraphOptimization.compute_effort(S2) == 12
@test MetagraphOptimization.compute_effort(U) == 1
@test MetagraphOptimization.compute_effort(V) == 6
@test MetagraphOptimization.compute_effort(P) == 0
@test MetagraphOptimization.compute_effort(Sum) == 1
@test MetagraphOptimization.compute_effort(Data10) == 0
@test MetagraphOptimization.compute_effort(Data20) == 0
@test MetagraphOptimization.compute_effort(S1) == 11
@test MetagraphOptimization.compute_effort(S2) == 12
@test MetagraphOptimization.compute_effort(U) == 1
@test MetagraphOptimization.compute_effort(V) == 6
@test MetagraphOptimization.compute_effort(P) == 0
@test MetagraphOptimization.compute_effort(Sum) == 1
@test MetagraphOptimization.compute_effort(Data10) == 0
@test MetagraphOptimization.compute_effort(Data20) == 0
@test MetagraphOptimization.data(S1) == 0
@test MetagraphOptimization.data(S2) == 0
@test MetagraphOptimization.data(U) == 0
@test MetagraphOptimization.data(V) == 0
@test MetagraphOptimization.data(P) == 0
@test MetagraphOptimization.data(Sum) == 0
@test MetagraphOptimization.data(Data10) == 10
@test MetagraphOptimization.data(Data20) == 20
@test MetagraphOptimization.data(S1) == 0
@test MetagraphOptimization.data(S2) == 0
@test MetagraphOptimization.data(U) == 0
@test MetagraphOptimization.data(V) == 0
@test MetagraphOptimization.data(P) == 0
@test MetagraphOptimization.data(Sum) == 0
@test MetagraphOptimization.data(Data10) == 10
@test MetagraphOptimization.data(Data20) == 20
@test S1 != S2
@test Data10 != Data20
@test S1 != S2
@test Data10 != Data20
Data10_2 = MetagraphOptimization.DataTask(10)
Data10_2 = MetagraphOptimization.DataTask(10)
# two data tasks with same data are identical, their nodes need not be
@test Data10_2 == Data10
# two data tasks with same data are identical, their nodes need not be
@test Data10_2 == Data10
@test Data10 == Data10
@test S1 == S1
@test Data10 == Data10
@test S1 == S1
Data10_3 = copy(Data10)
Data10_3 = copy(Data10)
@test Data10_3 == Data10
@test Data10_3 == Data10
S1_2 = copy(S1)
S1_2 = copy(S1)
@test S1_2 == S1
@test S1 == MetagraphOptimization.ComputeTaskS1()
end
println("Task Unit Tests Complete!")
@test S1_2 == S1
@test S1 == MetagraphOptimization.ComputeTaskS1()

View File

@ -1,11 +1,10 @@
using MetagraphOptimization
import MetagraphOptimization.bytes_to_human_readable
@testset "Unit Tests Utility" begin
@test MetagraphOptimization.bytes_to_human_readable(0) == "0.0 B"
@test MetagraphOptimization.bytes_to_human_readable(1020) == "1020.0 B"
@test MetagraphOptimization.bytes_to_human_readable(1025) == "1.001 KiB"
@test MetagraphOptimization.bytes_to_human_readable(684235) == "668.2 KiB"
@test MetagraphOptimization.bytes_to_human_readable(86214576) == "82.22 MiB"
@test MetagraphOptimization.bytes_to_human_readable(9241457698) == "8.607 GiB"
@test MetagraphOptimization.bytes_to_human_readable(3218598654367) == "2.927 TiB"
end
println("Utility Unit Tests Complete!")
@test bytes_to_human_readable(0) == "0.0 B"
@test bytes_to_human_readable(1020) == "1020.0 B"
@test bytes_to_human_readable(1025) == "1.001 KiB"
@test bytes_to_human_readable(684235) == "668.2 KiB"
@test bytes_to_human_readable(86214576) == "82.22 MiB"
@test bytes_to_human_readable(9241457698) == "8.607 GiB"
@test bytes_to_human_readable(3218598654367) == "2.927 TiB"