Tape Machine (#30)
Adds a tape machine way of executing the code. The tape machine is a series of FunctionCall objects, which can either be called one by one, or be used to generate expressions to make up a function. Reviewed-on: Rubydragon/MetagraphOptimization.jl#30 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
40
src/code_gen/function.jl
Normal file
40
src/code_gen/function.jl
Normal file
@@ -0,0 +1,40 @@
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
|
||||
initCaches = Expr(:block, tape.initCachesCode...)
|
||||
assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...)
|
||||
code = Expr(:block, expr_from_fc.(tape.computeCode)...)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(tape.machine), tape.outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(data_input::AbstractProcessInput) $(initCaches); $(assignInputs); $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
```
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
end
|
@@ -1,150 +0,0 @@
|
||||
"""
|
||||
gen_code(graph::DAG)
|
||||
|
||||
Generate the code for a given graph. The return value is a named tuple of:
|
||||
|
||||
- `code::Expr`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
|
||||
See also: [`execute`](@ref)
|
||||
"""
|
||||
function gen_code(graph::DAG, machine::Machine)
|
||||
sched = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
codeAcc = Vector{Expr}()
|
||||
sizehint!(codeAcc, length(graph.nodes))
|
||||
|
||||
for node in sched
|
||||
# TODO: this is kind of ugly, should init nodes be scheduled differently from the rest?
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(codeAcc, get_init_expression(node, entry_device(machine)))
|
||||
continue
|
||||
end
|
||||
push!(codeAcc, get_expression(node))
|
||||
end
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
return (code = Expr(:block, codeAcc...), inputSymbols = inputSyms, outputSymbol = outSym)
|
||||
end
|
||||
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return Expr(:block, initializeCaches...)
|
||||
end
|
||||
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
p = "get_particle($(processInputSymbol), $(type), $(index))"
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
evalExpr = eval(gen_access_expr(device, symbol))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue{$type, ComplexF64}($p, one(ComplexF64))"))
|
||||
end
|
||||
end
|
||||
|
||||
return Expr(:block, assignInputs...)
|
||||
end
|
||||
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
If an exception occurs during the execution of the generated code, it will be printed for investigation.
|
||||
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
func = eval(expr)
|
||||
|
||||
result = 0
|
||||
try
|
||||
result = @eval $func($input)
|
||||
#functionStr = string(expr)
|
||||
#println("Function:\n$functionStr")
|
||||
catch e
|
||||
println("Error while evaluating: $e")
|
||||
|
||||
# if we find a uuid in the exception we can color it in so it's easier to spot
|
||||
uuidRegex = r"[0-9a-f]{8}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{12}"
|
||||
m = match(uuidRegex, string(e))
|
||||
|
||||
functionStr = string(expr)
|
||||
if (isa(m, RegexMatch))
|
||||
functionStr = replace(functionStr, m.match => "\033[31m$(m.match)\033[0m")
|
||||
end
|
||||
|
||||
println("Function:\n$functionStr")
|
||||
@assert false
|
||||
end
|
||||
|
||||
return result
|
||||
end
|
182
src/code_gen/tape_machine.jl
Normal file
182
src/code_gen/tape_machine.jl
Normal file
@@ -0,0 +1,182 @@
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
call_fc(fc::FunctionCall, cache::Dict{Symbol, Any})
|
||||
|
||||
Execute the given [`FunctionCall`](@ref) on the dictionary.
|
||||
|
||||
Several more specialized versions of this function exist to reduce vector unrolling work for common cases.
|
||||
"""
|
||||
function call_fc(fc::FunctionCall{VectorT, M}, cache::Dict{Symbol, Any}) where {VectorT, M}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments..., getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, 0}) where {VectorT}
|
||||
return Meta.parse(
|
||||
"$(eval(gen_access_expr(fc.device, fc.return_symbol))) = $(fc.func)($(unroll_symbol_vector(eval.(gen_access_expr.(Ref(fc.device), fc.arguments)))))",
|
||||
)
|
||||
end
|
||||
|
||||
"""
|
||||
expr_from_fc(fc::FunctionCall)
|
||||
|
||||
For a given function call, return an expression evaluating it.
|
||||
"""
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, M}) where {VectorT, M}
|
||||
func_call = Expr(
|
||||
:call,
|
||||
Symbol(fc.func),
|
||||
fc.additional_arguments...,
|
||||
eval.(gen_access_expr.(Ref(fc.device), fc.arguments))...,
|
||||
)
|
||||
|
||||
expr = :($(eval(gen_access_expr(fc.device, fc.return_symbol))) = $func_call)
|
||||
return expr
|
||||
end
|
||||
|
||||
"""
|
||||
gen_cache_init_code(machine::Machine)
|
||||
|
||||
For each [`AbstractDevice`](@ref) in the given [`Machine`](@ref), returning a `Vector{Expr}` doing the initialization.
|
||||
"""
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return initializeCaches
|
||||
end
|
||||
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput)
|
||||
|
||||
Return the [`ParticleValue`](@ref) of the given type of particle with the given `index` from the given process input.
|
||||
|
||||
Function is wrapped into a [`FunctionCall`](@ref) in [`gen_input_assignment_code`](@ref).
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput) =
|
||||
ParticleValue{type, ComplexF64}(get_particle(x, type, index), one(ComplexF64))
|
||||
|
||||
"""
|
||||
gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
|
||||
Return a `Vector{Expr}` doing the input assignments from the given `processInputSymbol` onto the `inputSymbols`.
|
||||
"""
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{FunctionCall}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
# make a function for this, since we can't use anonymous functions in the FunctionCall
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
push!(
|
||||
assignInputs,
|
||||
FunctionCall(
|
||||
# x is the process input
|
||||
part_from_x,
|
||||
SVector{1, Symbol}(processInputSymbol),
|
||||
SVector{2, Any}(type, index),
|
||||
symbol,
|
||||
device,
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
return assignInputs
|
||||
end
|
||||
|
||||
"""
|
||||
gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Generate the code for a given graph. The return value is a [`Tape`](@ref).
|
||||
|
||||
See also: [`execute`](@ref), [`execute_tape`](@ref)
|
||||
"""
|
||||
function gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
schedule = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSyms, process, machine, :input)
|
||||
|
||||
return Tape(initCaches, assignInputs, schedule, inputSyms, outSym, Dict(), process, machine)
|
||||
end
|
||||
|
||||
"""
|
||||
execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
|
||||
Execute the given tape with the given input.
|
||||
|
||||
For implementation reasons, this disregards the set [`CacheStrategy`](@ref) of the devices and always uses a dictionary.
|
||||
"""
|
||||
function execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
cache = Dict{Symbol, Any}()
|
||||
cache[:input] = input
|
||||
# simply execute all the code snippets here
|
||||
# TODO: `@assert` that process input fits the tape.process
|
||||
for expr in tape.initCachesCode
|
||||
@eval $expr
|
||||
end
|
||||
|
||||
for function_call in tape.inputAssignCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
for function_call in tape.computeCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
|
||||
return cache[tape.outputSymbol]
|
||||
end
|
19
src/code_gen/type.jl
Normal file
19
src/code_gen/type.jl
Normal file
@@ -0,0 +1,19 @@
|
||||
|
||||
"""
|
||||
Tape
|
||||
|
||||
TODO: update docs
|
||||
- `code::Vector{Expr}`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
"""
|
||||
struct Tape
|
||||
initCachesCode::Vector{Expr}
|
||||
inputAssignCode::Vector{FunctionCall}
|
||||
computeCode::Vector{FunctionCall}
|
||||
inputSymbols::Dict{String, Vector{Symbol}}
|
||||
outputSymbol::Symbol
|
||||
cache::Dict{Symbol, Any}
|
||||
process::AbstractProcessDescription
|
||||
machine::Machine
|
||||
end
|
Reference in New Issue
Block a user