Tape Machine (#30)
Adds a tape machine way of executing the code. The tape machine is a series of FunctionCall objects, which can either be called one by one, or be used to generate expressions to make up a function. Reviewed-on: Rubydragon/MetagraphOptimization.jl#30 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
parent
92e0eeaaef
commit
82ed774b7e
1
.gitignore
vendored
1
.gitignore
vendored
@ -5,6 +5,7 @@
|
||||
|
||||
# Files generated by invoking Julia with --track-allocation
|
||||
*.mem
|
||||
*.pb.gz
|
||||
|
||||
# System-specific files and directories generated by the BinaryProvider and BinDeps packages
|
||||
# They contain absolute paths specific to the host computer, and so should not be committed
|
||||
|
@ -1,8 +1,23 @@
|
||||
# Code Generation
|
||||
|
||||
## Main
|
||||
## Types
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["code_gen/main.jl"]
|
||||
Pages = ["code_gen/type.jl"]
|
||||
Order = [:type, :constant, :function]
|
||||
```
|
||||
|
||||
## Function Generation
|
||||
Implementations for generation of a callable function. A function generated this way cannot immediately be called. One Julia World Age has to pass before this is possible, which happens when the global Julia scope advances. If the DAG and therefore the generated function becomes too large, use the tape machine instead, since compiling large functions becomes infeasible.
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["code_gen/function.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
||||
## Tape Machine
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["code_gen/tabe_machine.jl"]
|
||||
Order = [:function]
|
||||
```
|
@ -7,6 +7,13 @@ Pages = ["scheduler/interface.jl"]
|
||||
Order = [:type, :function]
|
||||
```
|
||||
|
||||
## Types
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["scheduler/type.jl"]
|
||||
Order = [:type, :function]
|
||||
```
|
||||
|
||||
## Greedy
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
|
@ -34,10 +34,3 @@ Modules = [MetagraphOptimization]
|
||||
Pages = ["task/properties.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
||||
## Print
|
||||
```@autodocs
|
||||
Modules = [MetagraphOptimization]
|
||||
Pages = ["task/print.jl"]
|
||||
Order = [:function]
|
||||
```
|
||||
|
@ -79,6 +79,7 @@ export execute
|
||||
export parse_dag, parse_process
|
||||
export gen_process_input
|
||||
export get_compute_function
|
||||
export gen_tape, execute_tape
|
||||
|
||||
# estimator
|
||||
export cost_type, graph_cost, operation_effect
|
||||
@ -120,6 +121,7 @@ include("diff/type.jl")
|
||||
include("properties/type.jl")
|
||||
include("operation/type.jl")
|
||||
include("graph/type.jl")
|
||||
include("scheduler/type.jl")
|
||||
|
||||
include("trie.jl")
|
||||
include("utility.jl")
|
||||
@ -155,7 +157,6 @@ include("properties/utility.jl")
|
||||
include("task/create.jl")
|
||||
include("task/compare.jl")
|
||||
include("task/compute.jl")
|
||||
include("task/print.jl")
|
||||
include("task/properties.jl")
|
||||
|
||||
include("estimator/interface.jl")
|
||||
@ -200,6 +201,8 @@ include("devices/cuda/impl.jl")
|
||||
include("scheduler/interface.jl")
|
||||
include("scheduler/greedy.jl")
|
||||
|
||||
include("code_gen/main.jl")
|
||||
include("code_gen/type.jl")
|
||||
include("code_gen/tape_machine.jl")
|
||||
include("code_gen/function.jl")
|
||||
|
||||
end # module MetagraphOptimization
|
||||
|
40
src/code_gen/function.jl
Normal file
40
src/code_gen/function.jl
Normal file
@ -0,0 +1,40 @@
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
|
||||
initCaches = Expr(:block, tape.initCachesCode...)
|
||||
assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...)
|
||||
code = Expr(:block, expr_from_fc.(tape.computeCode)...)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(tape.machine), tape.outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(data_input::AbstractProcessInput) $(initCaches); $(assignInputs); $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
```
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
end
|
@ -1,150 +0,0 @@
|
||||
"""
|
||||
gen_code(graph::DAG)
|
||||
|
||||
Generate the code for a given graph. The return value is a named tuple of:
|
||||
|
||||
- `code::Expr`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
|
||||
See also: [`execute`](@ref)
|
||||
"""
|
||||
function gen_code(graph::DAG, machine::Machine)
|
||||
sched = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
codeAcc = Vector{Expr}()
|
||||
sizehint!(codeAcc, length(graph.nodes))
|
||||
|
||||
for node in sched
|
||||
# TODO: this is kind of ugly, should init nodes be scheduled differently from the rest?
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(codeAcc, get_init_expression(node, entry_device(machine)))
|
||||
continue
|
||||
end
|
||||
push!(codeAcc, get_expression(node))
|
||||
end
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
return (code = Expr(:block, codeAcc...), inputSymbols = inputSyms, outputSymbol = outSym)
|
||||
end
|
||||
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return Expr(:block, initializeCaches...)
|
||||
end
|
||||
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
p = "get_particle($(processInputSymbol), $(type), $(index))"
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
evalExpr = eval(gen_access_expr(device, symbol))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue{$type, ComplexF64}($p, one(ComplexF64))"))
|
||||
end
|
||||
end
|
||||
|
||||
return Expr(:block, assignInputs...)
|
||||
end
|
||||
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
If an exception occurs during the execution of the generated code, it will be printed for investigation.
|
||||
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
func = eval(expr)
|
||||
|
||||
result = 0
|
||||
try
|
||||
result = @eval $func($input)
|
||||
#functionStr = string(expr)
|
||||
#println("Function:\n$functionStr")
|
||||
catch e
|
||||
println("Error while evaluating: $e")
|
||||
|
||||
# if we find a uuid in the exception we can color it in so it's easier to spot
|
||||
uuidRegex = r"[0-9a-f]{8}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{12}"
|
||||
m = match(uuidRegex, string(e))
|
||||
|
||||
functionStr = string(expr)
|
||||
if (isa(m, RegexMatch))
|
||||
functionStr = replace(functionStr, m.match => "\033[31m$(m.match)\033[0m")
|
||||
end
|
||||
|
||||
println("Function:\n$functionStr")
|
||||
@assert false
|
||||
end
|
||||
|
||||
return result
|
||||
end
|
182
src/code_gen/tape_machine.jl
Normal file
182
src/code_gen/tape_machine.jl
Normal file
@ -0,0 +1,182 @@
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
call_fc(fc::FunctionCall, cache::Dict{Symbol, Any})
|
||||
|
||||
Execute the given [`FunctionCall`](@ref) on the dictionary.
|
||||
|
||||
Several more specialized versions of this function exist to reduce vector unrolling work for common cases.
|
||||
"""
|
||||
function call_fc(fc::FunctionCall{VectorT, M}, cache::Dict{Symbol, Any}) where {VectorT, M}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments..., getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, 0}) where {VectorT}
|
||||
return Meta.parse(
|
||||
"$(eval(gen_access_expr(fc.device, fc.return_symbol))) = $(fc.func)($(unroll_symbol_vector(eval.(gen_access_expr.(Ref(fc.device), fc.arguments)))))",
|
||||
)
|
||||
end
|
||||
|
||||
"""
|
||||
expr_from_fc(fc::FunctionCall)
|
||||
|
||||
For a given function call, return an expression evaluating it.
|
||||
"""
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, M}) where {VectorT, M}
|
||||
func_call = Expr(
|
||||
:call,
|
||||
Symbol(fc.func),
|
||||
fc.additional_arguments...,
|
||||
eval.(gen_access_expr.(Ref(fc.device), fc.arguments))...,
|
||||
)
|
||||
|
||||
expr = :($(eval(gen_access_expr(fc.device, fc.return_symbol))) = $func_call)
|
||||
return expr
|
||||
end
|
||||
|
||||
"""
|
||||
gen_cache_init_code(machine::Machine)
|
||||
|
||||
For each [`AbstractDevice`](@ref) in the given [`Machine`](@ref), returning a `Vector{Expr}` doing the initialization.
|
||||
"""
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return initializeCaches
|
||||
end
|
||||
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput)
|
||||
|
||||
Return the [`ParticleValue`](@ref) of the given type of particle with the given `index` from the given process input.
|
||||
|
||||
Function is wrapped into a [`FunctionCall`](@ref) in [`gen_input_assignment_code`](@ref).
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput) =
|
||||
ParticleValue{type, ComplexF64}(get_particle(x, type, index), one(ComplexF64))
|
||||
|
||||
"""
|
||||
gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
|
||||
Return a `Vector{Expr}` doing the input assignments from the given `processInputSymbol` onto the `inputSymbols`.
|
||||
"""
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{FunctionCall}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
# make a function for this, since we can't use anonymous functions in the FunctionCall
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
push!(
|
||||
assignInputs,
|
||||
FunctionCall(
|
||||
# x is the process input
|
||||
part_from_x,
|
||||
SVector{1, Symbol}(processInputSymbol),
|
||||
SVector{2, Any}(type, index),
|
||||
symbol,
|
||||
device,
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
return assignInputs
|
||||
end
|
||||
|
||||
"""
|
||||
gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Generate the code for a given graph. The return value is a [`Tape`](@ref).
|
||||
|
||||
See also: [`execute`](@ref), [`execute_tape`](@ref)
|
||||
"""
|
||||
function gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
schedule = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSyms, process, machine, :input)
|
||||
|
||||
return Tape(initCaches, assignInputs, schedule, inputSyms, outSym, Dict(), process, machine)
|
||||
end
|
||||
|
||||
"""
|
||||
execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
|
||||
Execute the given tape with the given input.
|
||||
|
||||
For implementation reasons, this disregards the set [`CacheStrategy`](@ref) of the devices and always uses a dictionary.
|
||||
"""
|
||||
function execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
cache = Dict{Symbol, Any}()
|
||||
cache[:input] = input
|
||||
# simply execute all the code snippets here
|
||||
# TODO: `@assert` that process input fits the tape.process
|
||||
for expr in tape.initCachesCode
|
||||
@eval $expr
|
||||
end
|
||||
|
||||
for function_call in tape.inputAssignCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
for function_call in tape.computeCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
|
||||
return cache[tape.outputSymbol]
|
||||
end
|
19
src/code_gen/type.jl
Normal file
19
src/code_gen/type.jl
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
"""
|
||||
Tape
|
||||
|
||||
TODO: update docs
|
||||
- `code::Vector{Expr}`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
"""
|
||||
struct Tape
|
||||
initCachesCode::Vector{Expr}
|
||||
inputAssignCode::Vector{FunctionCall}
|
||||
computeCode::Vector{FunctionCall}
|
||||
inputSymbols::Dict{String, Vector{Symbol}}
|
||||
outputSymbol::Symbol
|
||||
cache::Dict{Symbol, Any}
|
||||
process::AbstractProcessDescription
|
||||
machine::Machine
|
||||
end
|
@ -76,91 +76,17 @@ function compute(::ComputeTaskABC_S1, data::ABCParticleValue{P})::ABCParticleVal
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskABC_Sum, data::StaticVector)
|
||||
compute(::ComputeTaskABC_Sum, data...)
|
||||
compute(::ComputeTaskABC_Sum, data::AbstractArray)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskABC_Sum, data::StaticVector)::Float64
|
||||
function compute(::ComputeTaskABC_Sum, data...)::Float64
|
||||
return sum(data)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate and return code evaluating [`ComputeTaskABC_P`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_P(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_U`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_U(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_V`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSym[1]` and `inSym[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_V(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_S2`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms[1]` and `inSyms[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type `Float64`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_S2(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_S1`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_S1(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskABC_Sum(), SVector{$(length(inExprs)), Float64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
function compute(::ComputeTaskABC_Sum, data::AbstractArray)::Float64
|
||||
return sum(data)
|
||||
end
|
||||
|
@ -43,48 +43,6 @@ this doesn't matter.
|
||||
"""
|
||||
compute_effort(t::ComputeTaskABC_Sum)::Float64 = 1.0
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S1)
|
||||
|
||||
Print the S1 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S1) = print(io, "ComputeS1")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S2)
|
||||
|
||||
Print the S2 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S2) = print(io, "ComputeS2")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_P)
|
||||
|
||||
Print the P task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_P) = print(io, "ComputeP")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_U)
|
||||
|
||||
Print the U task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_U) = print(io, "ComputeU")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_V)
|
||||
|
||||
Print the V task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_V) = print(io, "ComputeV")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_Sum)
|
||||
|
||||
Print the sum task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_Sum) = print(io, "ComputeSum")
|
||||
|
||||
"""
|
||||
children(::ComputeTaskABC_S1)
|
||||
|
||||
|
@ -106,92 +106,19 @@ function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P}) where {P <: QED
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskQED_Sum, data::StaticVector)
|
||||
compute(::ComputeTaskQED_Sum, data...)
|
||||
compute(::ComputeTaskQED_Sum, data::AbstractArray)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskQED_Sum, data::StaticVector)::ComplexF64
|
||||
function compute(::ComputeTaskQED_Sum, data...)::ComplexF64
|
||||
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
|
||||
return sum(data)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate and return code evaluating [`ComputeTaskQED_P`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_P(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_U`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_U(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_V`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSym[1]` and `inSym[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_V(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_S2`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms[1]` and `inSyms[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type `Float64`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_S2(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_S1`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_S1(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskQED_Sum(), SVector{$(length(inExprs)), ComplexF64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
function compute(::ComputeTaskQED_Sum, data::AbstractArray)::ComplexF64
|
||||
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
|
||||
return sum(data)
|
||||
end
|
||||
|
@ -170,6 +170,12 @@ end
|
||||
String(::Type{Incoming}) = "Incoming"
|
||||
String(::Type{Outgoing}) = "Outgoing"
|
||||
|
||||
String(::Type{PolX}) = "polx"
|
||||
String(::Type{PolY}) = "poly"
|
||||
|
||||
String(::Type{SpinUp}) = "spinup"
|
||||
String(::Type{SpinDown}) = "spindown"
|
||||
|
||||
String(::Incoming) = "i"
|
||||
String(::Outgoing) = "o"
|
||||
|
||||
@ -183,6 +189,16 @@ function String(::Type{<:AntiFermionStateful})
|
||||
return "p"
|
||||
end
|
||||
|
||||
function unique_name(::Type{PhotonStateful{Dir, Pol}}) where {Dir, Pol}
|
||||
return String(PhotonStateful) * String(Dir) * String(Pol)
|
||||
end
|
||||
function unique_name(::Type{FermionStateful{Dir, Spin}}) where {Dir, Spin}
|
||||
return String(FermionStateful) * String(Dir) * String(Spin)
|
||||
end
|
||||
function unique_name(::Type{AntiFermionStateful{Dir, Spin}}) where {Dir, Spin}
|
||||
return String(AntiFermionStateful) * String(Dir) * String(Spin)
|
||||
end
|
||||
|
||||
@inline particle(::PhotonStateful) = Photon()
|
||||
@inline particle(::FermionStateful) = Electron()
|
||||
@inline particle(::AntiFermionStateful) = Positron()
|
||||
|
@ -45,48 +45,6 @@ this doesn't matter.
|
||||
"""
|
||||
compute_effort(t::ComputeTaskQED_Sum)::Float64 = 1.0
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S1)
|
||||
|
||||
Print the S1 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S1) = print(io, "ComputeS1")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S2)
|
||||
|
||||
Print the S2 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S2) = print(io, "ComputeS2")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_P)
|
||||
|
||||
Print the P task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_P) = print(io, "ComputeP")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_U)
|
||||
|
||||
Print the U task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_U) = print(io, "ComputeU")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_V)
|
||||
|
||||
Print the V task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_V) = print(io, "ComputeV")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_Sum)
|
||||
|
||||
Print the sum task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_Sum) = print(io, "ComputeSum")
|
||||
|
||||
"""
|
||||
children(::ComputeTaskQED_S1)
|
||||
|
||||
|
@ -14,7 +14,7 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
|
||||
enqueue!(nodeQueue, node => 0)
|
||||
end
|
||||
|
||||
schedule = Vector{Node}()
|
||||
schedule = Vector{FunctionCall}()
|
||||
sizehint!(schedule, length(graph.nodes))
|
||||
|
||||
# keep an accumulated cost of things scheduled to this device so far
|
||||
@ -35,7 +35,12 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
|
||||
deviceAccCost[lowestDevice] = compute_effort(task(node))
|
||||
end
|
||||
|
||||
push!(schedule, node)
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(schedule, get_init_function_call(node, entry_device(machine)))
|
||||
else
|
||||
push!(schedule, get_function_call(node)...)
|
||||
end
|
||||
|
||||
for parent in parents(node)
|
||||
# reduce the priority of all parents by one
|
||||
if (!haskey(nodeQueue, parent))
|
||||
|
@ -14,5 +14,7 @@ Interface functions that must be implemented for implementations of [`Scheduler`
|
||||
The function assigns each [`ComputeTaskNode`](@ref) of the [`DAG`](@ref) to one of the devices in the given [`Machine`](@ref) and returns a `Vector{Node}` representing a topological ordering.
|
||||
|
||||
[`DataTaskNode`](@ref)s are not scheduled to devices since they do not compute. Instead, a data node transfers data from the [`AbstractDevice`](@ref) of their child to all [`AbstractDevice`](@ref)s of its parents.
|
||||
|
||||
Return a `Vector{FunctionCall}`. See [`FunctionCall`](@ref)
|
||||
"""
|
||||
function schedule_dag end
|
||||
|
14
src/scheduler/type.jl
Normal file
14
src/scheduler/type.jl
Normal file
@ -0,0 +1,14 @@
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
FunctionCall{N}
|
||||
|
||||
Type representing a function call with `N` parameters. Contains the function to call, argument symbols, the return symbol and the device to execute on.
|
||||
"""
|
||||
struct FunctionCall{VectorType <: AbstractVector, M}
|
||||
func::Function
|
||||
arguments::VectorType
|
||||
additional_arguments::SVector{M, Any} # additional arguments (as values) for the function call, will be prepended to the other arguments
|
||||
return_symbol::Symbol
|
||||
device::AbstractDevice
|
||||
end
|
@ -1,89 +1,85 @@
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask, data)
|
||||
|
||||
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
|
||||
"""
|
||||
function compute(t::FusedComputeTask, data)
|
||||
@assert false "This is not implemented and should never be called"
|
||||
function compute(t::FusedComputeTask, data...)
|
||||
inter = compute(t.first_task)
|
||||
return compute(t.second_task, inter, data2...)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector{String}, outExpr::String)
|
||||
get_function_call(n::Node)
|
||||
get_function_call(t::AbstractTask, device::AbstractDevice, inSymbols::AbstractVector, outSymbol::Symbol)
|
||||
|
||||
Generate code evaluating a [`FusedComputeTask`](@ref) on `inExprs`, providing the output on `outExpr`.
|
||||
`inExprs` should be of the correct types and may be heterogeneous. `outExpr` will be of the type of the output of `T2` of t.
|
||||
For a node or a task together with necessary information, return a vector of [`FunctionCall`](@ref)s for the computation of the node or task.
|
||||
|
||||
For ordinary compute or data tasks the vector will contain exactly one element, for a [`FusedComputeTask`](@ref) there can be any number of tasks greater 1.
|
||||
"""
|
||||
function get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
inExprs1 = Vector()
|
||||
for sym in t.t1_inputs
|
||||
push!(inExprs1, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
outExpr1 = gen_access_expr(device, t.t1_output)
|
||||
|
||||
inExprs2 = Vector()
|
||||
for sym in t.t2_inputs
|
||||
push!(inExprs2, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
expr1 = get_expression(t.first_task, device, inExprs1, outExpr1)
|
||||
expr2 = get_expression(t.second_task, device, [inExprs2..., outExpr1], outExpr)
|
||||
|
||||
full_expr = Expr(:block, expr1, expr2)
|
||||
|
||||
return full_expr
|
||||
function get_function_call(t::FusedComputeTask, device::AbstractDevice, inSymbols::AbstractVector, outSymbol::Symbol)
|
||||
# sort out the symbols to the correct tasks
|
||||
return [
|
||||
get_function_call(t.first_task, device, t.t1_inputs, t.t1_output)...,
|
||||
get_function_call(t.second_task, device, [t.t2_inputs..., t.t1_output], outSymbol)...,
|
||||
]
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::ComputeTaskNode)
|
||||
function get_function_call(
|
||||
t::CompTask,
|
||||
device::AbstractDevice,
|
||||
inSymbols::AbstractVector,
|
||||
outSymbol::Symbol,
|
||||
) where {CompTask <: AbstractComputeTask}
|
||||
return [FunctionCall(compute, inSymbols, SVector{1, Any}(t), outSymbol, device)]
|
||||
end
|
||||
|
||||
Generate and return code for a given [`ComputeTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::ComputeTaskNode)
|
||||
function get_function_call(node::ComputeTaskNode)
|
||||
@assert length(children(node)) <= children(task(node)) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(task(node)))\nNode's children: $(getfield.(node.children, :children))"
|
||||
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
|
||||
|
||||
inExprs = Vector()
|
||||
for id in getfield.(children(node), :id)
|
||||
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
|
||||
if (length(node.children) <= 50)
|
||||
#only use an SVector when there are few children
|
||||
return get_function_call(
|
||||
node.task,
|
||||
node.device,
|
||||
SVector{length(node.children), Symbol}(Symbol.(to_var_name.(getfield.(children(node), :id)))...),
|
||||
Symbol(to_var_name(node.id)),
|
||||
)
|
||||
else
|
||||
return get_function_call(
|
||||
node.task,
|
||||
node.device,
|
||||
Symbol.(to_var_name.(getfield.(children(node), :id))),
|
||||
Symbol(to_var_name(node.id)),
|
||||
)
|
||||
end
|
||||
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
|
||||
|
||||
return get_expression(task(node), node.device, inExprs, outExpr)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::DataTaskNode)
|
||||
|
||||
Generate and return code for a given [`DataTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::DataTaskNode)
|
||||
function get_function_call(node::DataTaskNode)
|
||||
@assert length(children(node)) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
|
||||
|
||||
# TODO: dispatch to device implementations generating the copy commands
|
||||
|
||||
child = children(node)[1]
|
||||
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
|
||||
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
return [
|
||||
FunctionCall(
|
||||
unpack_identity,
|
||||
SVector{1, Symbol}(Symbol(to_var_name(first(children(node)).id))),
|
||||
SVector{0, Any}(),
|
||||
Symbol(to_var_name(node.id)),
|
||||
first(children(node)).device,
|
||||
),
|
||||
]
|
||||
end
|
||||
|
||||
"""
|
||||
get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
|
||||
Generate and return code for the initial input reading expression for [`DataTaskNode`](@ref)s with 0 children, i.e., entry nodes.
|
||||
|
||||
See also: [`get_entry_nodes`](@ref)
|
||||
"""
|
||||
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
function get_init_function_call(node::DataTaskNode, device::AbstractDevice)
|
||||
@assert isempty(children(node)) "Trying to call get_init_expression on a data task node that is not an entry node."
|
||||
|
||||
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
|
||||
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
return FunctionCall(
|
||||
unpack_identity,
|
||||
SVector{1, Symbol}(Symbol("$(to_var_name(node.id))_in")),
|
||||
SVector{0, Any}(),
|
||||
Symbol(to_var_name(node.id)),
|
||||
device,
|
||||
)
|
||||
end
|
||||
|
@ -1,17 +0,0 @@
|
||||
"""
|
||||
show(io::IO, t::FusedComputeTask)
|
||||
|
||||
Print a string representation of the fused compute task to io.
|
||||
"""
|
||||
function show(io::IO, t::FusedComputeTask)
|
||||
return print(io, "ComputeFuse($(t.first_task), $(t.second_task))")
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, t::DataTask)
|
||||
|
||||
Print the data task to io.
|
||||
"""
|
||||
function show(io::IO, t::DataTask)
|
||||
return print(io, "Data", t.data)
|
||||
end
|
@ -3,28 +3,10 @@
|
||||
|
||||
Fallback implementation of the compute function of a compute task, throwing an error.
|
||||
"""
|
||||
function compute(t::AbstractTask; data...)
|
||||
function compute(t::AbstractTask, data...)
|
||||
return error("Need to implement compute()")
|
||||
end
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask; data...)
|
||||
|
||||
Compute a fused compute task.
|
||||
"""
|
||||
function compute(t::FusedComputeTask; data...)
|
||||
(T1, T2) = collect(typeof(t).parameters)
|
||||
|
||||
return compute(T2(), compute(T1(), data))
|
||||
end
|
||||
|
||||
"""
|
||||
compute(t::AbstractDataTask; data...)
|
||||
|
||||
The compute function of a data task, always the identity function, regardless of the specific task.
|
||||
"""
|
||||
compute(t::AbstractDataTask; data...) = data
|
||||
|
||||
"""
|
||||
compute_effort(t::AbstractTask)
|
||||
|
||||
|
@ -1,3 +1,18 @@
|
||||
"""
|
||||
noop()
|
||||
|
||||
Function with no arguments, returns nothing, does nothing. Useful for noop [`FunctionCall`](@ref)s.
|
||||
"""
|
||||
@inline noop() = nothing
|
||||
|
||||
"""
|
||||
unpack_identity(x::SVector)
|
||||
|
||||
Function taking an `SVector`, returning it unpacked.
|
||||
"""
|
||||
@inline unpack_identity(x::SVector{1, <:Any}) = x[1]
|
||||
@inline unpack_identity(x) = x
|
||||
|
||||
"""
|
||||
bytes_to_human_readable(bytes)
|
||||
|
||||
@ -104,6 +119,10 @@ function unroll_symbol_vector(vec::Vector)
|
||||
return result
|
||||
end
|
||||
|
||||
function unroll_symbol_vector(vec::SVector)
|
||||
return unroll_symbol_vector(Vector(vec))
|
||||
end
|
||||
|
||||
|
||||
|
||||
####################
|
||||
|
Loading…
x
Reference in New Issue
Block a user