Tape Machine (#30)
Adds a tape machine way of executing the code. The tape machine is a series of FunctionCall objects, which can either be called one by one, or be used to generate expressions to make up a function. Reviewed-on: Rubydragon/MetagraphOptimization.jl#30 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
@ -79,6 +79,7 @@ export execute
|
||||
export parse_dag, parse_process
|
||||
export gen_process_input
|
||||
export get_compute_function
|
||||
export gen_tape, execute_tape
|
||||
|
||||
# estimator
|
||||
export cost_type, graph_cost, operation_effect
|
||||
@ -120,6 +121,7 @@ include("diff/type.jl")
|
||||
include("properties/type.jl")
|
||||
include("operation/type.jl")
|
||||
include("graph/type.jl")
|
||||
include("scheduler/type.jl")
|
||||
|
||||
include("trie.jl")
|
||||
include("utility.jl")
|
||||
@ -155,7 +157,6 @@ include("properties/utility.jl")
|
||||
include("task/create.jl")
|
||||
include("task/compare.jl")
|
||||
include("task/compute.jl")
|
||||
include("task/print.jl")
|
||||
include("task/properties.jl")
|
||||
|
||||
include("estimator/interface.jl")
|
||||
@ -200,6 +201,8 @@ include("devices/cuda/impl.jl")
|
||||
include("scheduler/interface.jl")
|
||||
include("scheduler/greedy.jl")
|
||||
|
||||
include("code_gen/main.jl")
|
||||
include("code_gen/type.jl")
|
||||
include("code_gen/tape_machine.jl")
|
||||
include("code_gen/function.jl")
|
||||
|
||||
end # module MetagraphOptimization
|
||||
|
40
src/code_gen/function.jl
Normal file
40
src/code_gen/function.jl
Normal file
@ -0,0 +1,40 @@
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
|
||||
initCaches = Expr(:block, tape.initCachesCode...)
|
||||
assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...)
|
||||
code = Expr(:block, expr_from_fc.(tape.computeCode)...)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(tape.machine), tape.outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(data_input::AbstractProcessInput) $(initCaches); $(assignInputs); $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
```
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
tape = gen_tape(graph, process, machine)
|
||||
return execute_tape(tape, input)
|
||||
end
|
@ -1,150 +0,0 @@
|
||||
"""
|
||||
gen_code(graph::DAG)
|
||||
|
||||
Generate the code for a given graph. The return value is a named tuple of:
|
||||
|
||||
- `code::Expr`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
|
||||
See also: [`execute`](@ref)
|
||||
"""
|
||||
function gen_code(graph::DAG, machine::Machine)
|
||||
sched = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
codeAcc = Vector{Expr}()
|
||||
sizehint!(codeAcc, length(graph.nodes))
|
||||
|
||||
for node in sched
|
||||
# TODO: this is kind of ugly, should init nodes be scheduled differently from the rest?
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(codeAcc, get_init_expression(node, entry_device(machine)))
|
||||
continue
|
||||
end
|
||||
push!(codeAcc, get_expression(node))
|
||||
end
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
return (code = Expr(:block, codeAcc...), inputSymbols = inputSyms, outputSymbol = outSym)
|
||||
end
|
||||
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return Expr(:block, initializeCaches...)
|
||||
end
|
||||
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
p = "get_particle($(processInputSymbol), $(type), $(index))"
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
evalExpr = eval(gen_access_expr(device, symbol))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue{$type, ComplexF64}($p, one(ComplexF64))"))
|
||||
end
|
||||
end
|
||||
|
||||
return Expr(:block, assignInputs...)
|
||||
end
|
||||
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
If an exception occurs during the execution of the generated code, it will be printed for investigation.
|
||||
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
func = eval(expr)
|
||||
|
||||
result = 0
|
||||
try
|
||||
result = @eval $func($input)
|
||||
#functionStr = string(expr)
|
||||
#println("Function:\n$functionStr")
|
||||
catch e
|
||||
println("Error while evaluating: $e")
|
||||
|
||||
# if we find a uuid in the exception we can color it in so it's easier to spot
|
||||
uuidRegex = r"[0-9a-f]{8}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{12}"
|
||||
m = match(uuidRegex, string(e))
|
||||
|
||||
functionStr = string(expr)
|
||||
if (isa(m, RegexMatch))
|
||||
functionStr = replace(functionStr, m.match => "\033[31m$(m.match)\033[0m")
|
||||
end
|
||||
|
||||
println("Function:\n$functionStr")
|
||||
@assert false
|
||||
end
|
||||
|
||||
return result
|
||||
end
|
182
src/code_gen/tape_machine.jl
Normal file
182
src/code_gen/tape_machine.jl
Normal file
@ -0,0 +1,182 @@
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{1}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 0}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT <: SVector{2}}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], cache[fc.arguments[1]], cache[fc.arguments[2]])
|
||||
return nothing
|
||||
end
|
||||
|
||||
function call_fc(fc::FunctionCall{VectorT, 1}, cache::Dict{Symbol, Any}) where {VectorT}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments[1], getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
call_fc(fc::FunctionCall, cache::Dict{Symbol, Any})
|
||||
|
||||
Execute the given [`FunctionCall`](@ref) on the dictionary.
|
||||
|
||||
Several more specialized versions of this function exist to reduce vector unrolling work for common cases.
|
||||
"""
|
||||
function call_fc(fc::FunctionCall{VectorT, M}, cache::Dict{Symbol, Any}) where {VectorT, M}
|
||||
cache[fc.return_symbol] = fc.func(fc.additional_arguments..., getindex.(Ref(cache), fc.arguments)...)
|
||||
return nothing
|
||||
end
|
||||
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, 0}) where {VectorT}
|
||||
return Meta.parse(
|
||||
"$(eval(gen_access_expr(fc.device, fc.return_symbol))) = $(fc.func)($(unroll_symbol_vector(eval.(gen_access_expr.(Ref(fc.device), fc.arguments)))))",
|
||||
)
|
||||
end
|
||||
|
||||
"""
|
||||
expr_from_fc(fc::FunctionCall)
|
||||
|
||||
For a given function call, return an expression evaluating it.
|
||||
"""
|
||||
function expr_from_fc(fc::FunctionCall{VectorT, M}) where {VectorT, M}
|
||||
func_call = Expr(
|
||||
:call,
|
||||
Symbol(fc.func),
|
||||
fc.additional_arguments...,
|
||||
eval.(gen_access_expr.(Ref(fc.device), fc.arguments))...,
|
||||
)
|
||||
|
||||
expr = :($(eval(gen_access_expr(fc.device, fc.return_symbol))) = $func_call)
|
||||
return expr
|
||||
end
|
||||
|
||||
"""
|
||||
gen_cache_init_code(machine::Machine)
|
||||
|
||||
For each [`AbstractDevice`](@ref) in the given [`Machine`](@ref), returning a `Vector{Expr}` doing the initialization.
|
||||
"""
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return initializeCaches
|
||||
end
|
||||
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput)
|
||||
|
||||
Return the [`ParticleValue`](@ref) of the given type of particle with the given `index` from the given process input.
|
||||
|
||||
Function is wrapped into a [`FunctionCall`](@ref) in [`gen_input_assignment_code`](@ref).
|
||||
"""
|
||||
part_from_x(type::Type, index::Int, x::AbstractProcessInput) =
|
||||
ParticleValue{type, ComplexF64}(get_particle(x, type, index), one(ComplexF64))
|
||||
|
||||
"""
|
||||
gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
|
||||
Return a `Vector{Expr}` doing the input assignments from the given `processInputSymbol` onto the `inputSymbols`.
|
||||
"""
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{FunctionCall}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
# make a function for this, since we can't use anonymous functions in the FunctionCall
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
push!(
|
||||
assignInputs,
|
||||
FunctionCall(
|
||||
# x is the process input
|
||||
part_from_x,
|
||||
SVector{1, Symbol}(processInputSymbol),
|
||||
SVector{2, Any}(type, index),
|
||||
symbol,
|
||||
device,
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
return assignInputs
|
||||
end
|
||||
|
||||
"""
|
||||
gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Generate the code for a given graph. The return value is a [`Tape`](@ref).
|
||||
|
||||
See also: [`execute`](@ref), [`execute_tape`](@ref)
|
||||
"""
|
||||
function gen_tape(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
schedule = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSyms, process, machine, :input)
|
||||
|
||||
return Tape(initCaches, assignInputs, schedule, inputSyms, outSym, Dict(), process, machine)
|
||||
end
|
||||
|
||||
"""
|
||||
execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
|
||||
Execute the given tape with the given input.
|
||||
|
||||
For implementation reasons, this disregards the set [`CacheStrategy`](@ref) of the devices and always uses a dictionary.
|
||||
"""
|
||||
function execute_tape(tape::Tape, input::AbstractProcessInput)
|
||||
cache = Dict{Symbol, Any}()
|
||||
cache[:input] = input
|
||||
# simply execute all the code snippets here
|
||||
# TODO: `@assert` that process input fits the tape.process
|
||||
for expr in tape.initCachesCode
|
||||
@eval $expr
|
||||
end
|
||||
|
||||
for function_call in tape.inputAssignCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
for function_call in tape.computeCode
|
||||
call_fc(function_call, cache)
|
||||
end
|
||||
|
||||
return cache[tape.outputSymbol]
|
||||
end
|
19
src/code_gen/type.jl
Normal file
19
src/code_gen/type.jl
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
"""
|
||||
Tape
|
||||
|
||||
TODO: update docs
|
||||
- `code::Vector{Expr}`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
"""
|
||||
struct Tape
|
||||
initCachesCode::Vector{Expr}
|
||||
inputAssignCode::Vector{FunctionCall}
|
||||
computeCode::Vector{FunctionCall}
|
||||
inputSymbols::Dict{String, Vector{Symbol}}
|
||||
outputSymbol::Symbol
|
||||
cache::Dict{Symbol, Any}
|
||||
process::AbstractProcessDescription
|
||||
machine::Machine
|
||||
end
|
@ -76,91 +76,17 @@ function compute(::ComputeTaskABC_S1, data::ABCParticleValue{P})::ABCParticleVal
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskABC_Sum, data::StaticVector)
|
||||
compute(::ComputeTaskABC_Sum, data...)
|
||||
compute(::ComputeTaskABC_Sum, data::AbstractArray)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskABC_Sum, data::StaticVector)::Float64
|
||||
function compute(::ComputeTaskABC_Sum, data...)::Float64
|
||||
return sum(data)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate and return code evaluating [`ComputeTaskABC_P`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_P, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_P(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_U`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_U, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_U(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_V`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSym[1]` and `inSym[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_V, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_V(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_S2`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms[1]` and `inSyms[2]` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type `Float64`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_S2, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_S2(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_S1`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ABCParticleValue`](@ref), `outSym` will be of type [`ABCParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_S1, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_S1(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskABC_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskABC_Sum(), SVector{$(length(inExprs)), Float64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
function compute(::ComputeTaskABC_Sum, data::AbstractArray)::Float64
|
||||
return sum(data)
|
||||
end
|
||||
|
@ -43,48 +43,6 @@ this doesn't matter.
|
||||
"""
|
||||
compute_effort(t::ComputeTaskABC_Sum)::Float64 = 1.0
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S1)
|
||||
|
||||
Print the S1 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S1) = print(io, "ComputeS1")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S2)
|
||||
|
||||
Print the S2 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_S2) = print(io, "ComputeS2")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_P)
|
||||
|
||||
Print the P task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_P) = print(io, "ComputeP")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_U)
|
||||
|
||||
Print the U task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_U) = print(io, "ComputeU")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_V)
|
||||
|
||||
Print the V task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_V) = print(io, "ComputeV")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_Sum)
|
||||
|
||||
Print the sum task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskABC_Sum) = print(io, "ComputeSum")
|
||||
|
||||
"""
|
||||
children(::ComputeTaskABC_S1)
|
||||
|
||||
|
@ -106,92 +106,19 @@ function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P}) where {P <: QED
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskQED_Sum, data::StaticVector)
|
||||
compute(::ComputeTaskQED_Sum, data...)
|
||||
compute(::ComputeTaskQED_Sum, data::AbstractArray)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskQED_Sum, data::StaticVector)::ComplexF64
|
||||
function compute(::ComputeTaskQED_Sum, data...)::ComplexF64
|
||||
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
|
||||
return sum(data)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate and return code evaluating [`ComputeTaskQED_P`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_P, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_P(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_U`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_U, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_U(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_V`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSym[1]` and `inSym[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_V, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_V(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_S2`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms[1]` and `inSyms[2]` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type `Float64`.
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_S2, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_S2(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_S1`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`QEDParticleValue`](@ref), `outSym` will be of type [`QEDParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_S1, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_S1(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskQED_Sum`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskQED_Sum(), SVector{$(length(inExprs)), ComplexF64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
function compute(::ComputeTaskQED_Sum, data::AbstractArray)::ComplexF64
|
||||
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
|
||||
return sum(data)
|
||||
end
|
||||
|
@ -170,6 +170,12 @@ end
|
||||
String(::Type{Incoming}) = "Incoming"
|
||||
String(::Type{Outgoing}) = "Outgoing"
|
||||
|
||||
String(::Type{PolX}) = "polx"
|
||||
String(::Type{PolY}) = "poly"
|
||||
|
||||
String(::Type{SpinUp}) = "spinup"
|
||||
String(::Type{SpinDown}) = "spindown"
|
||||
|
||||
String(::Incoming) = "i"
|
||||
String(::Outgoing) = "o"
|
||||
|
||||
@ -183,6 +189,16 @@ function String(::Type{<:AntiFermionStateful})
|
||||
return "p"
|
||||
end
|
||||
|
||||
function unique_name(::Type{PhotonStateful{Dir, Pol}}) where {Dir, Pol}
|
||||
return String(PhotonStateful) * String(Dir) * String(Pol)
|
||||
end
|
||||
function unique_name(::Type{FermionStateful{Dir, Spin}}) where {Dir, Spin}
|
||||
return String(FermionStateful) * String(Dir) * String(Spin)
|
||||
end
|
||||
function unique_name(::Type{AntiFermionStateful{Dir, Spin}}) where {Dir, Spin}
|
||||
return String(AntiFermionStateful) * String(Dir) * String(Spin)
|
||||
end
|
||||
|
||||
@inline particle(::PhotonStateful) = Photon()
|
||||
@inline particle(::FermionStateful) = Electron()
|
||||
@inline particle(::AntiFermionStateful) = Positron()
|
||||
|
@ -45,48 +45,6 @@ this doesn't matter.
|
||||
"""
|
||||
compute_effort(t::ComputeTaskQED_Sum)::Float64 = 1.0
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S1)
|
||||
|
||||
Print the S1 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S1) = print(io, "ComputeS1")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S2)
|
||||
|
||||
Print the S2 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_S2) = print(io, "ComputeS2")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_P)
|
||||
|
||||
Print the P task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_P) = print(io, "ComputeP")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_U)
|
||||
|
||||
Print the U task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_U) = print(io, "ComputeU")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_V)
|
||||
|
||||
Print the V task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_V) = print(io, "ComputeV")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_Sum)
|
||||
|
||||
Print the sum task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskQED_Sum) = print(io, "ComputeSum")
|
||||
|
||||
"""
|
||||
children(::ComputeTaskQED_S1)
|
||||
|
||||
|
@ -14,7 +14,7 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
|
||||
enqueue!(nodeQueue, node => 0)
|
||||
end
|
||||
|
||||
schedule = Vector{Node}()
|
||||
schedule = Vector{FunctionCall}()
|
||||
sizehint!(schedule, length(graph.nodes))
|
||||
|
||||
# keep an accumulated cost of things scheduled to this device so far
|
||||
@ -35,7 +35,12 @@ function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
|
||||
deviceAccCost[lowestDevice] = compute_effort(task(node))
|
||||
end
|
||||
|
||||
push!(schedule, node)
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(schedule, get_init_function_call(node, entry_device(machine)))
|
||||
else
|
||||
push!(schedule, get_function_call(node)...)
|
||||
end
|
||||
|
||||
for parent in parents(node)
|
||||
# reduce the priority of all parents by one
|
||||
if (!haskey(nodeQueue, parent))
|
||||
|
@ -14,5 +14,7 @@ Interface functions that must be implemented for implementations of [`Scheduler`
|
||||
The function assigns each [`ComputeTaskNode`](@ref) of the [`DAG`](@ref) to one of the devices in the given [`Machine`](@ref) and returns a `Vector{Node}` representing a topological ordering.
|
||||
|
||||
[`DataTaskNode`](@ref)s are not scheduled to devices since they do not compute. Instead, a data node transfers data from the [`AbstractDevice`](@ref) of their child to all [`AbstractDevice`](@ref)s of its parents.
|
||||
|
||||
Return a `Vector{FunctionCall}`. See [`FunctionCall`](@ref)
|
||||
"""
|
||||
function schedule_dag end
|
||||
|
14
src/scheduler/type.jl
Normal file
14
src/scheduler/type.jl
Normal file
@ -0,0 +1,14 @@
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
FunctionCall{N}
|
||||
|
||||
Type representing a function call with `N` parameters. Contains the function to call, argument symbols, the return symbol and the device to execute on.
|
||||
"""
|
||||
struct FunctionCall{VectorType <: AbstractVector, M}
|
||||
func::Function
|
||||
arguments::VectorType
|
||||
additional_arguments::SVector{M, Any} # additional arguments (as values) for the function call, will be prepended to the other arguments
|
||||
return_symbol::Symbol
|
||||
device::AbstractDevice
|
||||
end
|
@ -1,89 +1,85 @@
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask, data)
|
||||
|
||||
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
|
||||
"""
|
||||
function compute(t::FusedComputeTask, data)
|
||||
@assert false "This is not implemented and should never be called"
|
||||
function compute(t::FusedComputeTask, data...)
|
||||
inter = compute(t.first_task)
|
||||
return compute(t.second_task, inter, data2...)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector{String}, outExpr::String)
|
||||
get_function_call(n::Node)
|
||||
get_function_call(t::AbstractTask, device::AbstractDevice, inSymbols::AbstractVector, outSymbol::Symbol)
|
||||
|
||||
Generate code evaluating a [`FusedComputeTask`](@ref) on `inExprs`, providing the output on `outExpr`.
|
||||
`inExprs` should be of the correct types and may be heterogeneous. `outExpr` will be of the type of the output of `T2` of t.
|
||||
For a node or a task together with necessary information, return a vector of [`FunctionCall`](@ref)s for the computation of the node or task.
|
||||
|
||||
For ordinary compute or data tasks the vector will contain exactly one element, for a [`FusedComputeTask`](@ref) there can be any number of tasks greater 1.
|
||||
"""
|
||||
function get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
inExprs1 = Vector()
|
||||
for sym in t.t1_inputs
|
||||
push!(inExprs1, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
outExpr1 = gen_access_expr(device, t.t1_output)
|
||||
|
||||
inExprs2 = Vector()
|
||||
for sym in t.t2_inputs
|
||||
push!(inExprs2, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
expr1 = get_expression(t.first_task, device, inExprs1, outExpr1)
|
||||
expr2 = get_expression(t.second_task, device, [inExprs2..., outExpr1], outExpr)
|
||||
|
||||
full_expr = Expr(:block, expr1, expr2)
|
||||
|
||||
return full_expr
|
||||
function get_function_call(t::FusedComputeTask, device::AbstractDevice, inSymbols::AbstractVector, outSymbol::Symbol)
|
||||
# sort out the symbols to the correct tasks
|
||||
return [
|
||||
get_function_call(t.first_task, device, t.t1_inputs, t.t1_output)...,
|
||||
get_function_call(t.second_task, device, [t.t2_inputs..., t.t1_output], outSymbol)...,
|
||||
]
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::ComputeTaskNode)
|
||||
function get_function_call(
|
||||
t::CompTask,
|
||||
device::AbstractDevice,
|
||||
inSymbols::AbstractVector,
|
||||
outSymbol::Symbol,
|
||||
) where {CompTask <: AbstractComputeTask}
|
||||
return [FunctionCall(compute, inSymbols, SVector{1, Any}(t), outSymbol, device)]
|
||||
end
|
||||
|
||||
Generate and return code for a given [`ComputeTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::ComputeTaskNode)
|
||||
function get_function_call(node::ComputeTaskNode)
|
||||
@assert length(children(node)) <= children(task(node)) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(task(node)))\nNode's children: $(getfield.(node.children, :children))"
|
||||
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
|
||||
|
||||
inExprs = Vector()
|
||||
for id in getfield.(children(node), :id)
|
||||
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
|
||||
if (length(node.children) <= 50)
|
||||
#only use an SVector when there are few children
|
||||
return get_function_call(
|
||||
node.task,
|
||||
node.device,
|
||||
SVector{length(node.children), Symbol}(Symbol.(to_var_name.(getfield.(children(node), :id)))...),
|
||||
Symbol(to_var_name(node.id)),
|
||||
)
|
||||
else
|
||||
return get_function_call(
|
||||
node.task,
|
||||
node.device,
|
||||
Symbol.(to_var_name.(getfield.(children(node), :id))),
|
||||
Symbol(to_var_name(node.id)),
|
||||
)
|
||||
end
|
||||
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
|
||||
|
||||
return get_expression(task(node), node.device, inExprs, outExpr)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::DataTaskNode)
|
||||
|
||||
Generate and return code for a given [`DataTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::DataTaskNode)
|
||||
function get_function_call(node::DataTaskNode)
|
||||
@assert length(children(node)) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
|
||||
|
||||
# TODO: dispatch to device implementations generating the copy commands
|
||||
|
||||
child = children(node)[1]
|
||||
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
|
||||
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
return [
|
||||
FunctionCall(
|
||||
unpack_identity,
|
||||
SVector{1, Symbol}(Symbol(to_var_name(first(children(node)).id))),
|
||||
SVector{0, Any}(),
|
||||
Symbol(to_var_name(node.id)),
|
||||
first(children(node)).device,
|
||||
),
|
||||
]
|
||||
end
|
||||
|
||||
"""
|
||||
get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
|
||||
Generate and return code for the initial input reading expression for [`DataTaskNode`](@ref)s with 0 children, i.e., entry nodes.
|
||||
|
||||
See also: [`get_entry_nodes`](@ref)
|
||||
"""
|
||||
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
function get_init_function_call(node::DataTaskNode, device::AbstractDevice)
|
||||
@assert isempty(children(node)) "Trying to call get_init_expression on a data task node that is not an entry node."
|
||||
|
||||
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
|
||||
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
return FunctionCall(
|
||||
unpack_identity,
|
||||
SVector{1, Symbol}(Symbol("$(to_var_name(node.id))_in")),
|
||||
SVector{0, Any}(),
|
||||
Symbol(to_var_name(node.id)),
|
||||
device,
|
||||
)
|
||||
end
|
||||
|
@ -1,17 +0,0 @@
|
||||
"""
|
||||
show(io::IO, t::FusedComputeTask)
|
||||
|
||||
Print a string representation of the fused compute task to io.
|
||||
"""
|
||||
function show(io::IO, t::FusedComputeTask)
|
||||
return print(io, "ComputeFuse($(t.first_task), $(t.second_task))")
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, t::DataTask)
|
||||
|
||||
Print the data task to io.
|
||||
"""
|
||||
function show(io::IO, t::DataTask)
|
||||
return print(io, "Data", t.data)
|
||||
end
|
@ -3,28 +3,10 @@
|
||||
|
||||
Fallback implementation of the compute function of a compute task, throwing an error.
|
||||
"""
|
||||
function compute(t::AbstractTask; data...)
|
||||
function compute(t::AbstractTask, data...)
|
||||
return error("Need to implement compute()")
|
||||
end
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask; data...)
|
||||
|
||||
Compute a fused compute task.
|
||||
"""
|
||||
function compute(t::FusedComputeTask; data...)
|
||||
(T1, T2) = collect(typeof(t).parameters)
|
||||
|
||||
return compute(T2(), compute(T1(), data))
|
||||
end
|
||||
|
||||
"""
|
||||
compute(t::AbstractDataTask; data...)
|
||||
|
||||
The compute function of a data task, always the identity function, regardless of the specific task.
|
||||
"""
|
||||
compute(t::AbstractDataTask; data...) = data
|
||||
|
||||
"""
|
||||
compute_effort(t::AbstractTask)
|
||||
|
||||
|
@ -1,3 +1,18 @@
|
||||
"""
|
||||
noop()
|
||||
|
||||
Function with no arguments, returns nothing, does nothing. Useful for noop [`FunctionCall`](@ref)s.
|
||||
"""
|
||||
@inline noop() = nothing
|
||||
|
||||
"""
|
||||
unpack_identity(x::SVector)
|
||||
|
||||
Function taking an `SVector`, returning it unpacked.
|
||||
"""
|
||||
@inline unpack_identity(x::SVector{1, <:Any}) = x[1]
|
||||
@inline unpack_identity(x) = x
|
||||
|
||||
"""
|
||||
bytes_to_human_readable(bytes)
|
||||
|
||||
@ -104,6 +119,10 @@ function unroll_symbol_vector(vec::Vector)
|
||||
return result
|
||||
end
|
||||
|
||||
function unroll_symbol_vector(vec::SVector)
|
||||
return unroll_symbol_vector(Vector(vec))
|
||||
end
|
||||
|
||||
|
||||
|
||||
####################
|
||||
|
Reference in New Issue
Block a user