Anton Reinhard 92e0eeaaef heterogeneity (#27)
Prepare things to work with heterogeneity, make things work on GPU

Reviewed-on: Rubydragon/MetagraphOptimization.jl#27
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
2023-12-18 14:31:52 +01:00

149 lines
4.6 KiB
Julia

using MetagraphOptimization
using LIKWID
using CUDA
using UUIDs
function cpu_bench(compute_function, inputs)
compute_function.(inputs[begin:10]) # make sure it's compiled
time = @elapsed Threads.@threads for i in eachindex(inputs)
@invokelatest compute_function(inputs[i])
end
rate = length(inputs) / time
return (time, rate)
end
function gpu_bench(compute_function, inputs)
CUDA.@sync compute_function.(inputs[begin:10]) # make sure it's compiled
time = @elapsed CUDA.@sync compute_function.(inputs)
rate = length(inputs) / time
return (time, rate)
end
function bench_process(
process::MetagraphOptimization.AbstractProcessDescription,
func,
io::IO = stdout;
use_likwid = true,
)
println(io, "\n--- Benchmarking $(process) ---")
NFLOPs = GraphProperties(graph).computeEffort
if use_likwid
input = gen_process_input(process)
func(input) # compile first
_, events = @perfmon "FLOPS_DP" func(input)
NFLOPs = first(events["FLOPS_DP"])["RETIRED_SSE_AVX_FLOPS_ALL"]
end
nInputs = 10000000 # ten million
println(io, "Generating $nInputs inputs with $(Threads.nthreads()) threads...")
inputs = Vector{typeof(gen_process_input(process))}()
resize!(inputs, nInputs)
processes = Vector{typeof(process)}()
for i in 1:Threads.nthreads()
push!(processes, copy(process))
end
Threads.@threads for i in eachindex(inputs)
inputs[i] = gen_process_input(processes[Threads.nthreads()])
end
println(io, "Benchmarking CPU with $(Threads.nthreads()) threads...")
(time_cpu, rate_cpu) = cpu_bench(func, inputs)
flops_cpu = (rate_cpu * NFLOPs) / 1024^3
println(io, "Benchmarking GPU...")
cuInputs = CuArray(inputs)
(time_gpu, rate_gpu) = gpu_bench(func, cuInputs)
flops_gpu = (rate_gpu * NFLOPs) / 1024^3
println(io, "\nBenchmark Summary for $(process):")
if use_likwid
println(io, "Measured FLOPS by LIKWID: $NFLOPs")
else
println(io, "Total graph compute effort: $NFLOPs")
end
println(io, "Total input size: $(bytes_to_human_readable(Base.summarysize(inputs)))")
println(io, "CPU, $(Threads.nthreads()) threads")
println(io, " Time: $time_cpu")
println(io, " Rate: $rate_cpu")
println(io, " GFLOPS: $flops_cpu")
println(io, "GPU, $(name(first(CUDA.devices())))")
println(io, " Time: $time_gpu")
println(io, " Rate: $rate_gpu")
return println(io, " GFLOPS: $flops_gpu")
end
# use "mock" machine that only uses cpu
machine = Machine(
[
MetagraphOptimization.NumaNode(
0,
1,
MetagraphOptimization.default_strategy(MetagraphOptimization.NumaNode),
-1.0,
UUIDs.uuid1(),
),
],
[-1.0;;],
)
optimizer = ReductionOptimizer()
# sadly cannot put these in functions because the world age must increase after the function is created which happens only in the global scope
# compton
process = parse_process("ke->ke", QEDModel())
graph = gen_graph(process)
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
# 2-photon compton
process = parse_process("ke->kke", QEDModel())
graph = gen_graph(process)
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
# 3-photon compton
process = parse_process("ke->kkke", QEDModel())
graph = gen_graph(process)
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
# AB->AB
process = parse_process("AB->AB", ABCModel())
graph = parse_dag("input/AB->AB.txt", ABCModel())
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
# AB->AB^3
process = parse_process("AB->ABBB", ABCModel())
graph = parse_dag("input/AB->ABBB.txt", ABCModel())
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
exit(0)
# 4-photon compton
process = parse_process("ke->kkkke", QEDModel())
graph = gen_graph(process)
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)
# AB->AB^5
process = parse_process("AB->ABBBBB", ABCModel())
graph = parse_dag("input/AB->ABBBBB.txt", ABCModel())
optimize_to_fixpoint!(optimizer, graph)
compute_func = get_compute_function(graph, process, machine)
bench_process(process, compute_func)