rubydragon 87dbaf2c32
All checks were successful
MetagraphOptimization_CI / docs (push) Successful in 10m41s
MetagraphOptimization_CI / test (push) Successful in 30m40s
experiments (#1)
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Reviewed-on: #1
2024-05-08 12:03:27 +02:00

131 lines
3.5 KiB
Julia

using CSV
using DataFrames
using Plots
using StatsPlots
using LaTeXStrings
if (length(ARGS) < 1)
println("Please use with \"input_file.csv\"")
end
processes = [
"QED Process: 'ke->ke'",
"QED Process: 'ke->kke'",
"QED Process: 'ke->kkke'",
"QED Process: 'ke->kkkke'",
"QED Process: 'ke->kkkkke'",
"ABC Process: 'AB->AB'",
"ABC Process: 'AB->ABBB'",
"ABC Process: 'AB->ABBBBB'",
]
function proc_to_n(str::AbstractString)
parts = split(str, "'")
parts = split(parts[2], "->")
k_count = count(c -> c == 'k', parts[2])
return k_count
end
function beautify_title(str::AbstractString)
parts = split(str, "'")
preprefix = parts[1]
infix = parts[2]
sufsuffix = parts[3]
parts = split(infix, "->")
prefix = parts[1]
suffix = parts[2]
k_count = count(c -> c == 'k', suffix)
B_count = count(c -> c == 'B', suffix)
if k_count == 1 || B_count == 1
new_suffix = suffix
elseif k_count >= 1
new_suffix = replace(suffix, r"k+" => "k^$k_count")
elseif B_count >= 1
new_suffix = replace(suffix, r"B+" => "B^$B_count")
end
return preprefix * L"%$prefix \rightarrow %$new_suffix" * sufsuffix
end
input_file = ARGS[1]
df = CSV.read(input_file, DataFrame)
n_inputs = df[:, "n_inputs"][1]
gpu_name = df[:, "gpu_name"][1]
if (gpu_name == "")
println("Results file did not execute everything on GPU! (or didn't write gpu name)")
exit(0)
end
# plotting with process size as x axis
title_string = "GPU $gpu_name, $n_inputs samples"
df_filt = filter(:process_name => x -> proc_to_n(x) >= 1, df)
df_filt.gpu_rate = df_filt.gpu_rate
df_filt.gpu_time = df_filt.gpu_time
df_filt.gpu_gflops = df_filt.gpu_gflops
df_filt.process_size = @. proc_to_n(df_filt.process_name)
df_no_opt = filter(:process_name => x -> match(r" not optimized$", x) !== nothing, df_filt)
df_red = filter(:process_name => x -> match(r" reduced$", x) !== nothing, df_filt)
@df df_no_opt scatter(:process_size, :gpu_rate, label = "unoptimized function execution rate", markersize = 7)
@df df_red scatter!(:process_size, :gpu_rate, label = "reduced function execution rate", markersize = 7)
plot!(
#title = title_string * ", sample rate",
yscale = :log10,
legend = :outerbottom,
xticks = [1, 2, 3, 4, 5],
legendcolumns = 2,
legend_font_pointsize = 10,
size = (800, 600),
ylabel = "rate (" * L"s^{-1}" * ")",
xlabel = "process size (#)",
)
savefig("gpu_rate_$(gpu_name).pdf")
@df df_no_opt scatter(:process_size, :gpu_time, label = "unoptimized function execution time", markersize = 7)
@df df_red scatter!(:process_size, :gpu_time, label = "reduced function execution time", markersize = 7)
plot!(
#title = title_string * ", execution time",
yscale = :log10,
legend = :outerbottom,
xticks = [1, 2, 3, 4, 5],
legendcolumns = 2,
legend_font_pointsize = 10,
size = (800, 600),
ylabel = "time (s)",
xlabel = "process size (#)",
)
savefig("gpu_times_$(gpu_name).pdf")
@df df_no_opt scatter(:process_size, :gpu_gflops, label = "unoptimized function", markersize = 7)
@df df_red scatter!(:process_size, :gpu_gflops, label = "reduced function", markersize = 7)
plot!(
#title = title_string * ", GFLOPS",
yscale = :linear,
legend = :outerbottom,
xticks = [1, 2, 3, 4, 5],
legendcolumns = 2,
legend_font_pointsize = 10,
size = (800, 600),
ylabel = "performance (GFLOPS)",
xlabel = "process size (#)",
)
savefig("gpu_perf_$(gpu_name).pdf")