{ "cells": [ { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "using Combinatorics" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "num_diagrams_small_form (generic function with 3 methods)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "function num_diagrams(m::Int, e::Int, u::Int = 0, t::Int = 0)\n", " n = e + u + t\n", " return Int(factorial(3n-3) / factorial(2n-1)) * binomial(m+3n-3, 3n-3) * factorial(m) * factorial(e) * factorial(u) * factorial(t)\n", "end\n", "\n", "function num_diagrams_small_form(m::Int, e::Int, u::Int = 0, t::Int = 0)\n", " n = e + u + t\n", " return Int(factorial(m+3n-3) / factorial(2n-1)) * factorial(e) * factorial(u) * factorial(t)\n", "end" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8\n", "8\n" ] } ], "source": [ "# Trident:\n", "println(num_diagrams(1, 2))\n", "println(num_diagrams_small_form(1, 2))" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2, 6, 24, 120, 720, 5040, 40320]\n", "[2, 6, 24, 120, 720, 5040, 40320]\n" ] } ], "source": [ "# n-Photon Compton:\n", "println([num_diagrams(n, 1) for n in 2:8])\n", "println([num_diagrams_small_form(n, 1) for n in 2:8])" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2, 36, 1728, 158400, 23587200, 5181926400]\n", "[2, 36, 1728, 158400, 23587200, 5181926400]\n" ] } ], "source": [ "# fermion scattering\n", "println([num_diagrams(0, n) for n in 2:7])\n", "println([num_diagrams_small_form(0, n) for n in 2:7])" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\rowcolor[HTML]{9B9B9B}1 && 1 & 0 & 0 & 1 & 1 & 2 & 6 & 24 & 120 \\\\ \\hline\n", "\\rowcolor[HTML]{C0C0C0}2 && 1 & 1 & 0 & 1 & 4 & 20 & 120 & 840 & 6720 \\\\ \\hline\n", "\\rowcolor[HTML]{9B9B9B}2 && 2 & 0 & 0 & 2 & 8 & 40 & 240 & 1680 & 13440 \\\\ \\hline\n", "\\rowcolor[HTML]{C0C0C0}3 && 1 & 1 & 1 & 6 & 42 & 336 & 3024 & 30240 & 332640 \\\\ \\hline\n", "\\rowcolor[HTML]{9B9B9B}3 && 2 & 1 & 0 & 12 & 84 & 672 & 6048 & 60480 & 665280 \\\\ \\hline\n", "\\rowcolor[HTML]{C0C0C0}3 && 3 & 0 & 0 & 36 & 252 & 2016 & 18144 & 181440 & 1995840 \\\\ \\hline\n", "\\rowcolor[HTML]{9B9B9B}4 && 2 & 1 & 1 & 144 & 1440 & 15840 & 190080 & 2471040 & 34594560 \\\\ \\hline\n", "\\rowcolor[HTML]{C0C0C0}4 && 2 & 2 & 0 & 288 & 2880 & 31680 & 380160 & 4942080 & 69189120 \\\\ \\hline\n", "\\rowcolor[HTML]{9B9B9B}4 && 3 & 1 & 0 & 432 & 4320 & 47520 & 570240 & 7413120 & 103783680 \\\\ \\hline\n", "\\rowcolor[HTML]{C0C0C0}4 && 4 & 0 & 0 & 1728 & 17280 & 190080 & 2280960 & 29652480 & 415134720 \\\\ \\hline\n" ] } ], "source": [ "# tables\n", "i = 0\n", "nums = [[1, 0, 0], [1, 1, 0], [2, 0, 0], [1, 1, 1], [2, 1, 0], [3, 0, 0], [2, 1, 1], [2, 2, 0], [3, 1, 0], [4, 0, 0]]\n", "for (e, u, t) in nums\n", " i += 1\n", " if (u + t + e == 0) continue end\n", " if (i % 2 == 0) \n", " print(\"\\\\rowcolor[HTML]{C0C0C0}\")\n", " else\n", " print(\"\\\\rowcolor[HTML]{9B9B9B}\")\n", " end\n", " println(\"$(e + u + t) && $e & $u & $t & $(num_diagrams(0, e, u, t)) & $(num_diagrams(1, e, u, t)) & $(num_diagrams(2, e, u, t)) & $(num_diagrams(3, e, u, t)) & $(num_diagrams(4, e, u, t)) & $(num_diagrams(5, e, u, t)) \\\\\\\\ \\\\hline\")\n", "end" ] } ], "metadata": { "kernelspec": { "display_name": "Julia 1.9.4", "language": "julia", "name": "julia-1.9" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.9.4" } }, "nbformat": 4, "nbformat_minor": 2 }