Compare commits

...

6 Commits

Author SHA1 Message Date
4eee23f081 Run on GPU
Some checks failed
MetagraphOptimization_CI / docs (push) Failing after 5m43s
MetagraphOptimization_CI / test (push) Failing after 6m2s
2024-07-09 23:19:25 +02:00
dee44dad66 Small fixes
Some checks failed
MetagraphOptimization_CI / test (push) Failing after 1m31s
MetagraphOptimization_CI / docs (push) Failing after 1m38s
2024-07-05 02:15:03 +02:00
b784720859 Minor fixes and commints 2024-07-04 20:40:22 +02:00
813d40cd30 Working state
Some checks failed
MetagraphOptimization_CI / docs (push) Failing after 1m40s
MetagraphOptimization_CI / test (push) Failing after 1m47s
2024-07-04 20:24:39 +02:00
92f534f6bf Fix congruent ph script
Some checks failed
MetagraphOptimization_CI / test (push) Failing after 1m35s
MetagraphOptimization_CI / docs (push) Failing after 1m39s
2024-07-04 17:03:18 +02:00
55501c15c8 WIP 2024-07-04 15:41:13 +02:00
11 changed files with 333 additions and 173 deletions

194
examples/congruent_in_ph.jl Normal file
View File

@ -0,0 +1,194 @@
ENV["UCX_ERROR_SIGNALS"] = "SIGILL,SIGBUS,SIGFPE"
using MetagraphOptimization
using QEDbase
using QEDcore
using QEDprocesses
using Random
using UUIDs
using CUDA
using NamedDims
using CSV
using JLD2
using FlexiMaps
RNG = Random.MersenneTwister(123)
function mock_machine()
return Machine(
[
MetagraphOptimization.NumaNode(
0,
1,
MetagraphOptimization.default_strategy(MetagraphOptimization.NumaNode),
-1.0,
UUIDs.uuid1(),
),
],
[-1.0;;],
)
end
function congruent_input_momenta(processDescription::GenericQEDProcess, omega::Number)
# generate an input sample for given e + nk -> e' + k' process, where the nk are equal
inputMasses = Vector{Float64}()
for particle in incoming_particles(processDescription)
push!(inputMasses, mass(particle))
end
outputMasses = Vector{Float64}()
for particle in outgoing_particles(processDescription)
push!(outputMasses, mass(particle))
end
initial_momenta = [
i == length(inputMasses) ? SFourMomentum(1, 0, 0, 0) : SFourMomentum(omega, 0, 0, omega) for
i in 1:length(inputMasses)
]
ss = sqrt(sum(initial_momenta) * sum(initial_momenta))
final_momenta = MetagraphOptimization.generate_physical_massive_moms(RNG, ss, outputMasses)
return (tuple(initial_momenta...), tuple(final_momenta...))
end
# theta ∈ [0, 2π] and phi ∈ [0, 2π]
function congruent_input_momenta_scenario_2(
processDescription::GenericQEDProcess,
omega::Number,
theta::Number,
phi::Number,
)
# -------------
# same as above
# generate an input sample for given e + nk -> e' + k' process, where the nk are equal
inputMasses = Vector{Float64}()
for particle in incoming_particles(processDescription)
push!(inputMasses, mass(particle))
end
outputMasses = Vector{Float64}()
for particle in outgoing_particles(processDescription)
push!(outputMasses, mass(particle))
end
initial_momenta = [
i == length(inputMasses) ? SFourMomentum(1, 0, 0, 0) : SFourMomentum(omega, 0, 0, omega) for
i in 1:length(inputMasses)
]
ss = sqrt(sum(initial_momenta) * sum(initial_momenta))
# up to here
# ----------
# now calculate the final_momenta from omega, cos_theta and phi
n = number_particles(processDescription, Incoming(), Photon())
cos_theta = cos(theta)
omega_prime = (n * omega) / (1 + n * omega * (1 - cos_theta))
k_prime =
omega_prime * SFourMomentum(1, sqrt(1 - cos_theta^2) * cos(phi), sqrt(1 - cos_theta^2) * sin(phi), cos_theta)
p_prime = sum(initial_momenta) - k_prime
final_momenta = (k_prime, p_prime)
return (tuple(initial_momenta...), tuple(final_momenta...))
end
function build_psp(processDescription::GenericQEDProcess, momenta)
return PhaseSpacePoint(
processDescription,
PerturbativeQED(),
PhasespaceDefinition(SphericalCoordinateSystem(), ElectronRestFrame()),
momenta[1],
momenta[2],
)
end
# hack to fix stacksize for threading
with_stacksize(f, n) = fetch(schedule(Task(f, n)))
# scenario 2
N = 1024 # thetas
M = 1024 # phis
K = 64 # omegas
thetas = collect(LinRange(0, 2π, N))
phis = collect(LinRange(0, 2π, M))
omegas = collect(maprange(log, 2e-2, 2e-7, K))
for photons in 1:5
# temp process to generate momenta
println("Generating $(K*N*M) inputs for $photons photons (Scenario 2 grid walk)...")
temp_process = parse_process("k"^photons * "e->ke", QEDModel(), PolX(), SpinUp(), PolX(), SpinUp())
input_momenta =
Array{typeof(congruent_input_momenta_scenario_2(temp_process, omegas[1], thetas[1], phis[1]))}(undef, (K, N, M))
Threads.@threads for k in 1:K
Threads.@threads for i in 1:N
Threads.@threads for j in 1:M
input_momenta[k, i, j] = congruent_input_momenta_scenario_2(temp_process, omegas[k], thetas[i], phis[j])
end
end
end
cu_results = CuArray{Float64}(undef, size(input_momenta))
fill!(cu_results, 0.0)
i = 1
for (in_pol, in_spin, out_pol, out_spin) in
Iterators.product([PolX(), PolY()], [SpinUp(), SpinDown()], [PolX(), PolY()], [SpinUp(), SpinDown()])
print(
"[$i/16] Calculating for spin/pol config: $in_pol, $in_spin -> $out_pol, $out_spin... Preparing inputs... ",
)
process = parse_process("k"^photons * "e->ke", QEDModel(), in_pol, in_spin, out_pol, out_spin)
inputs = Array{typeof(build_psp(process, input_momenta[1, 1, 1]))}(undef, (K, N, M))
#println("input_momenta: $input_momenta")
Threads.@threads for k in 1:K
Threads.@threads for i in 1:N
Threads.@threads for j in 1:M
inputs[k, i, j] = build_psp(process, input_momenta[k, i, j])
end
end
end
cu_inputs = CuArray(inputs)
print("Preparing graph... ")
graph = gen_graph(process)
optimize_to_fixpoint!(ReductionOptimizer(), graph)
print("Preparing function... ")
kernel! = get_cuda_kernel(graph, process, mock_machine())
#func = get_compute_function(graph, process, mock_machine())
print("Calculating... ")
ts = 32
bs = Int64(length(cu_inputs) / 32)
outputs = CuArray{ComplexF64}(undef, size(cu_inputs))
@cuda threads = ts blocks = bs always_inline = true kernel!(cu_inputs, outputs, length(cu_inputs))
CUDA.device_synchronize()
cu_results += abs2.(outputs)
println("Done.")
i += 1
end
println("Writing results")
out_ph_moms = getindex.(getindex.(input_momenta, 2), 1)
out_el_moms = getindex.(getindex.(input_momenta, 2), 2)
results = NamedDimsArray{(:omegas, :thetas, :phis)}(Array(cu_results))
println("Named results array: $(typeof(results))")
@save "$(photons)_congruent_photons_grid.jld2" omegas thetas phis results
end

View File

@ -100,9 +100,6 @@ export ==, in, show, isempty, delete!, length
export bytes_to_human_readable
# TODO: this is probably not good
import QEDprocesses.compute
import Base.length
import Base.show
import Base.==

View File

@ -1,25 +1,5 @@
# patch QEDprocesses
# see issue https://github.com/QEDjl-project/QEDprocesses.jl/issues/77
@inline function QEDprocesses.number_particles(
proc_def::QEDbase.AbstractProcessDefinition,
dir::DIR,
::PT,
) where {DIR <: QEDbase.ParticleDirection, PT <: QEDbase.AbstractParticleType}
return count(x -> x isa PT, particles(proc_def, dir))
end
@inline function QEDprocesses.number_particles(
proc_def::QEDbase.AbstractProcessDefinition,
::PS,
) where {
DIR <: QEDbase.ParticleDirection,
PT <: QEDbase.AbstractParticleType,
EL <: AbstractFourMomentum,
PS <: ParticleStateful{DIR, PT, EL},
}
return QEDprocesses.number_particles(proc_def, DIR(), PT())
end
@inline function QEDprocesses.number_particles(
proc_def::QEDbase.AbstractProcessDefinition,
::Type{PS},
@ -43,29 +23,3 @@ end
) where {DIR <: ParticleDirection, SPECIES <: AbstractParticleType, EL <: AbstractFourMomentum}
return ParticleStateful(DIR(), SPECIES(), mom)
end
@inline function QEDbase.momentum(
psp::AbstractPhaseSpacePoint{MODEL, PROC, PS_DEF, INT, OUTT},
dir::ParticleDirection,
species::AbstractParticleType,
n::Int,
) where {MODEL, PROC, PS_DEF, INT, OUTT}
# TODO: can be done through fancy template recursion too with 0 overhead
i = 0
c = n
for p in particles(psp, dir)
i += 1
if particle_species(p) isa typeof(species)
c -= 1
end
if c == 0
break
end
end
if c != 0 || n <= 0
throw(InvalidInputError("could not get $n-th momentum of $dir $species, does not exist"))
end
return momenta(psp, dir)[i]
end

View File

@ -7,7 +7,7 @@ function get_compute_function(graph::DAG, instance, machine::Machine)
tape = gen_tape(graph, instance, machine)
initCaches = Expr(:block, tape.initCachesCode...)
assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...)
assignInputs = Expr(:block, tape.inputAssignCode...)
code = Expr(:block, expr_from_fc.(tape.computeCode)...)
functionId = to_var_name(UUIDs.uuid1(rng[1]))
@ -30,7 +30,7 @@ function get_cuda_kernel(graph::DAG, instance, machine::Machine)
tape = gen_tape(graph, instance, machine)
initCaches = Expr(:block, tape.initCachesCode...)
assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...)
assignInputs = Expr(:block, tape.inputAssignCode...)
code = Expr(:block, expr_from_fc.(tape.computeCode)...)
functionId = to_var_name(UUIDs.uuid1(rng[1]))

View File

@ -75,7 +75,7 @@ end
inputSymbols::Dict{String, Vector{Symbol}},
instance::AbstractProblemInstance,
machine::Machine,
problemInputSymbol::Symbol = :input,
problemInputSymbol::Symbol = :data_input,
)
Return a `Vector{Expr}` doing the input assignments from the given `problemInputSymbol` onto the `inputSymbols`.
@ -84,9 +84,9 @@ function gen_input_assignment_code(
inputSymbols::Dict{String, Vector{Symbol}},
instance,
machine::Machine,
problemInputSymbol::Symbol = :input,
problemInputSymbol::Symbol = :data_input,
)
assignInputs = Vector{FunctionCall}()
assignInputs = Vector{Expr}()
for (name, symbols) in inputSymbols
# make a function for this, since we can't use anonymous functions in the FunctionCall
@ -94,7 +94,9 @@ function gen_input_assignment_code(
device = entry_device(machine)
push!(
assignInputs,
FunctionCall(input_expr, SVector{1, Any}(name), SVector{1, Symbol}(problemInputSymbol), symbol, device),
Meta.parse(
"$(eval(gen_access_expr(device, symbol))) = $(input_expr(instance, name, problemInputSymbol))",
),
)
end
end
@ -126,7 +128,7 @@ function gen_tape(graph::DAG, instance, machine::Machine, scheduler::AbstractSch
outSym = Symbol(to_var_name(get_exit_node(graph).id))
initCaches = gen_cache_init_code(machine)
assignInputs = gen_input_assignment_code(inputSyms, instance, machine, :input)
assignInputs = gen_input_assignment_code(inputSyms, instance, machine, :data_input)
return Tape{input_type(instance)}(initCaches, assignInputs, schedule, inputSyms, outSym, Dict(), instance, machine)
end
@ -140,7 +142,7 @@ For implementation reasons, this disregards the set [`CacheStrategy`](@ref) of t
"""
function execute_tape(tape::Tape, input)
cache = Dict{Symbol, Any}()
cache[:input] = input
cache[:data_input] = input
# simply execute all the code snippets here
@assert typeof(input) == input_type(tape.instance)
# TODO: `@assert` that input fits the tape.instance

View File

@ -11,7 +11,7 @@ TODO: update docs
"""
struct Tape{INPUT}
initCachesCode::Vector{Expr}
inputAssignCode::Vector{FunctionCall}
inputAssignCode::Vector{Expr}
computeCode::Vector{FunctionCall}
inputSymbols::Dict{String, Vector{Symbol}}
outputSymbol::Symbol

View File

@ -39,8 +39,8 @@ Generate the [`DAG`](@ref) for the given [`AbstractProblemInstance`](@ref). Ever
function graph end
"""
input_expr(::AbstractProblemInstance, name::String, input)
input_expr(instance::AbstractProblemInstance, name::String, input_symbol::Symbol)
For a given [`AbstractProblemInstance`](@ref), the problem input (of type `input_type(...)`) and an entry node name, return a that specific input value from the input symbol.
For the given [`AbstractProblemInstance`](@ref), the entry node name, and the symbol of the problem input (where a variable of type `input_type(...)` will exist), return an `Expr` that gets that specific input value from the input symbol.
"""
function input_expr end

View File

@ -1,12 +1,26 @@
using StaticArrays
function input_expr(name::String, psp::PhaseSpacePoint)
construction_string(::Incoming) = "Incoming()"
construction_string(::Outgoing) = "Outgoing()"
construction_string(::Electron) = "Electron()"
construction_string(::Positron) = "Positron()"
construction_string(::Photon) = "Photon()"
construction_string(::PolX) = "PolX()"
construction_string(::PolY) = "PolY()"
construction_string(::SpinUp) = "SpinUp()"
construction_string(::SpinDown) = "SpinDown()"
function input_expr(instance::GenericQEDProcess, name::String, psp_symbol::Symbol)
(type, index) = type_index_from_name(QEDModel(), name)
return ParticleValueSP(
type(momentum(psp, particle_direction(type), particle_species(type), index)),
0.0im,
spin_or_pol(process(psp), type, index),
return Meta.parse(
"ParticleValueSP(
$type(momentum($psp_symbol, $(construction_string(particle_direction(type))), $(construction_string(particle_species(type))), Val($index))),
0.0im,
$(construction_string(spin_or_pol(instance, type, index))),
)",
)
end

View File

@ -8,7 +8,6 @@ function _svector_from_type(processDescription::GenericQEDProcess, type, particl
if haskey(out_particles(processDescription), type)
return SVector{out_particles(processDescription)[type], type}(filter(x -> typeof(x) <: type, particles))
end
return SVector{0, type}()
end
"""
@ -64,9 +63,9 @@ function gen_graph(process_description::GenericQEDProcess)
# TODO: Not all diagram outputs should always be summed at the end, if they differ by fermion exchange they need to be diffed
# Should not matter for n-Photon Compton processes though
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(0)), track = false, invalidate_cache = false)
global_data_out = insert_node!(graph, make_node(DataTask(COMPLEX_SIZE)), track = false, invalidate_cache = false)
insert_edge!(graph, sum_node, global_data_out, track = false, invalidate_cache = false)
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(0)); track = false, invalidate_cache = false)
global_data_out = insert_node!(graph, make_node(DataTask(COMPLEX_SIZE)); track = false, invalidate_cache = false)
insert_edge!(graph, sum_node, global_data_out; track = false, invalidate_cache = false)
# remember the data out nodes for connection
dataOutNodes = Dict()
@ -75,16 +74,16 @@ function gen_graph(process_description::GenericQEDProcess)
# generate data in and U tasks
data_in = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE), String(particle)),
make_node(DataTask(PARTICLE_VALUE_SIZE), String(particle));
track = false,
invalidate_cache = false,
) # read particle data node
compute_u = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false, invalidate_cache = false) # compute U node
compute_u = insert_node!(graph, make_node(ComputeTaskQED_U()); track = false, invalidate_cache = false) # compute U node
data_out =
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ABCParticleValue object)
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)); track = false, invalidate_cache = false) # transfer data out from u (one ABCParticleValue object)
insert_edge!(graph, data_in, compute_u, track = false, invalidate_cache = false)
insert_edge!(graph, compute_u, data_out, track = false, invalidate_cache = false)
insert_edge!(graph, data_in, compute_u; track = false, invalidate_cache = false)
insert_edge!(graph, compute_u, data_out; track = false, invalidate_cache = false)
# remember the data_out node for future edges
dataOutNodes[String(particle)] = data_out
@ -100,19 +99,19 @@ function gen_graph(process_description::GenericQEDProcess)
data_in1 = dataOutNodes[String(vertex.in1)]
data_in2 = dataOutNodes[String(vertex.in2)]
compute_V = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false, invalidate_cache = false) # compute vertex
compute_V = insert_node!(graph, make_node(ComputeTaskQED_V()); track = false, invalidate_cache = false) # compute vertex
insert_edge!(graph, data_in1, compute_V, track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_V, track = false, invalidate_cache = false)
insert_edge!(graph, data_in1, compute_V; track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_V; track = false, invalidate_cache = false)
data_V_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
make_node(DataTask(PARTICLE_VALUE_SIZE));
track = false,
invalidate_cache = false,
)
insert_edge!(graph, compute_V, data_V_out, track = false, invalidate_cache = false)
insert_edge!(graph, compute_V, data_V_out; track = false, invalidate_cache = false)
if (vertex.out == tie.in1 || vertex.out == tie.in2)
# out particle is part of the tie -> there will be an S2 task with it later, don't make S1 task
@ -122,18 +121,18 @@ function gen_graph(process_description::GenericQEDProcess)
# otherwise, add S1 task
compute_S1 =
insert_node!(graph, make_node(ComputeTaskQED_S1()), track = false, invalidate_cache = false) # compute propagator
insert_node!(graph, make_node(ComputeTaskQED_S1()); track = false, invalidate_cache = false) # compute propagator
insert_edge!(graph, data_V_out, compute_S1, track = false, invalidate_cache = false)
insert_edge!(graph, data_V_out, compute_S1; track = false, invalidate_cache = false)
data_S1_out = insert_node!(
graph,
make_node(DataTask(PARTICLE_VALUE_SIZE)),
make_node(DataTask(PARTICLE_VALUE_SIZE));
track = false,
invalidate_cache = false,
)
insert_edge!(graph, compute_S1, data_S1_out, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S1, data_S1_out; track = false, invalidate_cache = false)
# overrides potentially different nodes from previous diagrams, which is intentional
dataOutNodes[String(vertex.out)] = data_S1_out
@ -144,16 +143,16 @@ function gen_graph(process_description::GenericQEDProcess)
data_in1 = dataOutNodes[String(tie.in1)]
data_in2 = dataOutNodes[String(tie.in2)]
compute_S2 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false, invalidate_cache = false)
compute_S2 = insert_node!(graph, make_node(ComputeTaskQED_S2()); track = false, invalidate_cache = false)
data_S2 = insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
data_S2 = insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)); track = false, invalidate_cache = false)
insert_edge!(graph, data_in1, compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_S2, track = false, invalidate_cache = false)
insert_edge!(graph, data_in1, compute_S2; track = false, invalidate_cache = false)
insert_edge!(graph, data_in2, compute_S2; track = false, invalidate_cache = false)
insert_edge!(graph, compute_S2, data_S2, track = false, invalidate_cache = false)
insert_edge!(graph, compute_S2, data_S2; track = false, invalidate_cache = false)
insert_edge!(graph, data_S2, sum_node, track = false, invalidate_cache = false)
insert_edge!(graph, data_S2, sum_node; track = false, invalidate_cache = false)
add_child!(task(sum_node))
end

View File

@ -152,8 +152,9 @@ function ==(d1::FeynmanDiagram, d2::FeynmanDiagram)
)=#
end
copy(fd::FeynmanDiagram) =
FeynmanDiagram(deepcopy(fd.vertices), copy(fd.tie[]), deepcopy(fd.particles), copy(fd.type_ids))
function copy(fd::FeynmanDiagram)
return FeynmanDiagram(deepcopy(fd.vertices), copy(fd.tie[]), deepcopy(fd.particles), copy(fd.type_ids))
end
"""
id_for_type(d::FeynmanDiagram, t::Type{<:ParticleStateful})
@ -503,7 +504,6 @@ function gen_compton_diagram_from_order(order::Vector{Int}, inFerm, outFerm, n::
return new_diagram
end
#=
"""
gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, outFerm, n::Int, m::Int)
@ -511,8 +511,8 @@ Helper function for [`gen_compton_diagrams`](@Ref). Generates a single diagram f
"""
function gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, outFerm, n::Int, m::Int)
photons = vcat(
[FeynmanParticle(ParticleStateful{Incoming, Photon}, i) for i in 1:n],
[FeynmanParticle(ParticleStateful{Outgoing, Photon}, i) for i in 1:m],
[FeynmanParticle(ParticleStateful{Incoming, Photon, SFourMomentum}, i) for i in 1:n],
[FeynmanParticle(ParticleStateful{Outgoing, Photon, SFourMomentum}, i) for i in 1:m],
)
new_diagram = FeynmanDiagram(
@ -520,10 +520,10 @@ function gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, out
missing,
[inFerm, outFerm, photons...],
Dict{Type, Int64}(
ParticleStateful{Incoming, Electron} => 1,
ParticleStateful{Outgoing, Electron} => 1,
ParticleStateful{Incoming, Photon} => n,
ParticleStateful{Outgoing, Photon} => m,
ParticleStateful{Incoming, Electron, SFourMomentum} => 1,
ParticleStateful{Outgoing, Electron, SFourMomentum} => 1,
ParticleStateful{Incoming, Photon, SFourMomentum} => n,
ParticleStateful{Outgoing, Photon, SFourMomentum} => m,
),
)
@ -535,9 +535,9 @@ function gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, out
while left_index <= right_index
# left side
v_left = FeynmanVertex(
FeynmanParticle(ParticleStateful{Incoming, Electron}, iterations),
FeynmanParticle(ParticleStateful{Incoming, Electron, SFourMomentum}, iterations),
photons[order[left_index]],
FeynmanParticle(ParticleStateful{Incoming, Electron}, iterations + 1),
FeynmanParticle(ParticleStateful{Incoming, Electron, SFourMomentum}, iterations + 1),
)
left_index += 1
add_vertex!(new_diagram, v_left)
@ -550,9 +550,9 @@ function gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, out
if (iterations == 1)
# right side
v_right = FeynmanVertex(
FeynmanParticle(ParticleStateful{Outgoing, Electron}, iterations),
FeynmanParticle(ParticleStateful{Outgoing, Electron, SFourMomentum}, iterations),
photons[order[right_index]],
FeynmanParticle(ParticleStateful{Outgoing, Electron}, iterations + 1),
FeynmanParticle(ParticleStateful{Outgoing, Electron, SFourMomentum}, iterations + 1),
)
right_index -= 1
add_vertex!(new_diagram, v_right)
@ -566,7 +566,6 @@ function gen_compton_diagram_from_order_one_side(order::Vector{Int}, inFerm, out
add_tie!(new_diagram, FeynmanTie(ps[1], ps[2]))
return new_diagram
end
=#
"""
gen_compton_diagrams(n::Int, m::Int)
@ -587,7 +586,6 @@ function gen_compton_diagrams(n::Int, m::Int)
return vcat(diagrams...)
end
"""
gen_compton_diagrams_one_side(n::Int, m::Int)

View File

@ -56,8 +56,8 @@ function compton_groundtruth(input::PhaseSpacePoint)
virt2_mom = p1.momentum + k1.momentum
@test isapprox(p2.momentum + k2.momentum, virt2_mom)
s_p2_k1 = propagator(Electron(), virt1_mom)
s_p1_k1 = propagator(Electron(), virt2_mom)
s_p2_k1 = QEDbase.propagator(Electron(), virt1_mom)
s_p1_k1 = QEDbase.propagator(Electron(), virt2_mom)
diagram1 = u_p2 * (eps_1 * QED_vertex()) * s_p2_k1 * (eps_2 * QED_vertex()) * u_p1
diagram2 = u_p2 * (eps_2 * QED_vertex()) * s_p1_k1 * (eps_1 * QED_vertex()) * u_p1
@ -65,7 +65,6 @@ function compton_groundtruth(input::PhaseSpacePoint)
return diagram1 + diagram2
end
@testset "Interaction Result" begin
import MetagraphOptimization.QED_conserve_momentum
@ -202,97 +201,97 @@ end
graph = DAG()
# s to output (exit node)
d_exit = insert_node!(graph, make_node(DataTask(16)), track = false)
d_exit = insert_node!(graph, make_node(DataTask(16)); track=false)
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(2)), track = false)
sum_node = insert_node!(graph, make_node(ComputeTaskQED_Sum(2)); track=false)
d_s0_sum = insert_node!(graph, make_node(DataTask(16)), track = false)
d_s1_sum = insert_node!(graph, make_node(DataTask(16)), track = false)
d_s0_sum = insert_node!(graph, make_node(DataTask(16)); track=false)
d_s1_sum = insert_node!(graph, make_node(DataTask(16)); track=false)
# final s compute
s0 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false)
s1 = insert_node!(graph, make_node(ComputeTaskQED_S2()), track = false)
s0 = insert_node!(graph, make_node(ComputeTaskQED_S2()); track=false)
s1 = insert_node!(graph, make_node(ComputeTaskQED_S2()); track=false)
# data from v0 and v1 to s0
d_v0_s0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v2_s1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v3_s1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_v0_s0 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_v1_s0 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_v2_s1 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_v3_s1 = insert_node!(graph, make_node(DataTask(96)); track=false)
# v0 and v1 compute
v0 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v1 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v2 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v3 = insert_node!(graph, make_node(ComputeTaskQED_V()), track = false)
v0 = insert_node!(graph, make_node(ComputeTaskQED_V()); track=false)
v1 = insert_node!(graph, make_node(ComputeTaskQED_V()); track=false)
v2 = insert_node!(graph, make_node(ComputeTaskQED_V()); track=false)
v3 = insert_node!(graph, make_node(ComputeTaskQED_V()); track=false)
# data from uPhIn, uPhOut, uElIn, uElOut to v0 and v1
d_uPhIn_v0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElIn_v0 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhOut_v1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElOut_v1 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhIn_v0 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uElIn_v0 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uPhOut_v1 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uElOut_v1 = insert_node!(graph, make_node(DataTask(96)); track=false)
# data from uPhIn, uPhOut, uElIn, uElOut to v2 and v3
d_uPhOut_v2 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElIn_v2 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhIn_v3 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uElOut_v3 = insert_node!(graph, make_node(DataTask(96)), track = false)
d_uPhOut_v2 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uElIn_v2 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uPhIn_v3 = insert_node!(graph, make_node(DataTask(96)); track=false)
d_uElOut_v3 = insert_node!(graph, make_node(DataTask(96)); track=false)
# uPhIn, uPhOut, uElIn and uElOut computes
uPhIn = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uPhOut = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uElIn = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uElOut = insert_node!(graph, make_node(ComputeTaskQED_U()), track = false)
uPhIn = insert_node!(graph, make_node(ComputeTaskQED_U()); track=false)
uPhOut = insert_node!(graph, make_node(ComputeTaskQED_U()); track=false)
uElIn = insert_node!(graph, make_node(ComputeTaskQED_U()); track=false)
uElOut = insert_node!(graph, make_node(ComputeTaskQED_U()); track=false)
# data into U
d_uPhIn = insert_node!(graph, make_node(DataTask(16), "ki1"), track = false)
d_uPhOut = insert_node!(graph, make_node(DataTask(16), "ko1"), track = false)
d_uElIn = insert_node!(graph, make_node(DataTask(16), "ei1"), track = false)
d_uElOut = insert_node!(graph, make_node(DataTask(16), "eo1"), track = false)
d_uPhIn = insert_node!(graph, make_node(DataTask(16), "ki1"); track=false)
d_uPhOut = insert_node!(graph, make_node(DataTask(16), "ko1"); track=false)
d_uElIn = insert_node!(graph, make_node(DataTask(16), "ei1"); track=false)
d_uElOut = insert_node!(graph, make_node(DataTask(16), "eo1"); track=false)
# now for all the edges
insert_edge!(graph, d_uPhIn, uPhIn, track = false)
insert_edge!(graph, d_uPhOut, uPhOut, track = false)
insert_edge!(graph, d_uElIn, uElIn, track = false)
insert_edge!(graph, d_uElOut, uElOut, track = false)
insert_edge!(graph, d_uPhIn, uPhIn; track=false)
insert_edge!(graph, d_uPhOut, uPhOut; track=false)
insert_edge!(graph, d_uElIn, uElIn; track=false)
insert_edge!(graph, d_uElOut, uElOut; track=false)
insert_edge!(graph, uPhIn, d_uPhIn_v0, track = false)
insert_edge!(graph, uPhOut, d_uPhOut_v1, track = false)
insert_edge!(graph, uElIn, d_uElIn_v0, track = false)
insert_edge!(graph, uElOut, d_uElOut_v1, track = false)
insert_edge!(graph, uPhIn, d_uPhIn_v0; track=false)
insert_edge!(graph, uPhOut, d_uPhOut_v1; track=false)
insert_edge!(graph, uElIn, d_uElIn_v0; track=false)
insert_edge!(graph, uElOut, d_uElOut_v1; track=false)
insert_edge!(graph, uPhIn, d_uPhIn_v3, track = false)
insert_edge!(graph, uPhOut, d_uPhOut_v2, track = false)
insert_edge!(graph, uElIn, d_uElIn_v2, track = false)
insert_edge!(graph, uElOut, d_uElOut_v3, track = false)
insert_edge!(graph, uPhIn, d_uPhIn_v3; track=false)
insert_edge!(graph, uPhOut, d_uPhOut_v2; track=false)
insert_edge!(graph, uElIn, d_uElIn_v2; track=false)
insert_edge!(graph, uElOut, d_uElOut_v3; track=false)
insert_edge!(graph, d_uPhIn_v0, v0, track = false)
insert_edge!(graph, d_uPhOut_v1, v1, track = false)
insert_edge!(graph, d_uElIn_v0, v0, track = false)
insert_edge!(graph, d_uElOut_v1, v1, track = false)
insert_edge!(graph, d_uPhIn_v0, v0; track=false)
insert_edge!(graph, d_uPhOut_v1, v1; track=false)
insert_edge!(graph, d_uElIn_v0, v0; track=false)
insert_edge!(graph, d_uElOut_v1, v1; track=false)
insert_edge!(graph, d_uPhIn_v3, v3, track = false)
insert_edge!(graph, d_uPhOut_v2, v2, track = false)
insert_edge!(graph, d_uElIn_v2, v2, track = false)
insert_edge!(graph, d_uElOut_v3, v3, track = false)
insert_edge!(graph, d_uPhIn_v3, v3; track=false)
insert_edge!(graph, d_uPhOut_v2, v2; track=false)
insert_edge!(graph, d_uElIn_v2, v2; track=false)
insert_edge!(graph, d_uElOut_v3, v3; track=false)
insert_edge!(graph, v0, d_v0_s0, track = false)
insert_edge!(graph, v1, d_v1_s0, track = false)
insert_edge!(graph, v2, d_v2_s1, track = false)
insert_edge!(graph, v3, d_v3_s1, track = false)
insert_edge!(graph, v0, d_v0_s0; track=false)
insert_edge!(graph, v1, d_v1_s0; track=false)
insert_edge!(graph, v2, d_v2_s1; track=false)
insert_edge!(graph, v3, d_v3_s1; track=false)
insert_edge!(graph, d_v0_s0, s0, track = false)
insert_edge!(graph, d_v1_s0, s0, track = false)
insert_edge!(graph, d_v0_s0, s0; track=false)
insert_edge!(graph, d_v1_s0, s0; track=false)
insert_edge!(graph, d_v2_s1, s1, track = false)
insert_edge!(graph, d_v3_s1, s1, track = false)
insert_edge!(graph, d_v2_s1, s1; track=false)
insert_edge!(graph, d_v3_s1, s1; track=false)
insert_edge!(graph, s0, d_s0_sum, track = false)
insert_edge!(graph, s1, d_s1_sum, track = false)
insert_edge!(graph, s0, d_s0_sum; track=false)
insert_edge!(graph, s1, d_s1_sum; track=false)
insert_edge!(graph, d_s0_sum, sum_node, track = false)
insert_edge!(graph, d_s1_sum, sum_node, track = false)
insert_edge!(graph, d_s0_sum, sum_node; track=false)
insert_edge!(graph, d_s1_sum, sum_node; track=false)
insert_edge!(graph, sum_node, d_exit, track = false)
insert_edge!(graph, sum_node, d_exit; track=false)
input = [gen_process_input(process) for _ in 1:1000]
@ -305,9 +304,12 @@ end
@test isapprox(compton_function.(input), compton_groundtruth.(input))
end
@testset "Equal results after optimization" for optimizer in
[ReductionOptimizer(), RandomWalkOptimizer(MersenneTwister(0))]
@testset "Process $proc_str" for proc_str in ["ke->ke", "kp->kp", "kk->ep", "ep->kk", "ke->kke", "ke->kkke"]
@testset "Equal results after optimization" for optimizer in [
ReductionOptimizer(), RandomWalkOptimizer(MersenneTwister(0))
]
@testset "Process $proc_str" for proc_str in [
"ke->ke", "kp->kp", "kk->ep", "ep->kk", "ke->kke", "ke->kkke"
]
model = QEDModel()
process = parse_process(proc_str, model)
machine = Machine(