Congruent incoming photons implementation (#11)
Some checks failed
MetagraphOptimization_CI / test (push) Failing after 1m29s
MetagraphOptimization_CI / docs (push) Failing after 1m31s

Co-authored-by: Rubydragon <anton.reinhard@proton.me>
Reviewed-on: #11
This commit is contained in:
2024-07-10 14:04:13 +02:00
parent 1b4ba285c3
commit e29622c8f1
23 changed files with 820 additions and 626 deletions

194
examples/congruent_in_ph.jl Normal file
View File

@@ -0,0 +1,194 @@
ENV["UCX_ERROR_SIGNALS"] = "SIGILL,SIGBUS,SIGFPE"
using MetagraphOptimization
using QEDbase
using QEDcore
using QEDprocesses
using Random
using UUIDs
using CUDA
using NamedDims
using CSV
using JLD2
using FlexiMaps
RNG = Random.MersenneTwister(123)
function mock_machine()
return Machine(
[
MetagraphOptimization.NumaNode(
0,
1,
MetagraphOptimization.default_strategy(MetagraphOptimization.NumaNode),
-1.0,
UUIDs.uuid1(),
),
],
[-1.0;;],
)
end
function congruent_input_momenta(processDescription::GenericQEDProcess, omega::Number)
# generate an input sample for given e + nk -> e' + k' process, where the nk are equal
inputMasses = Vector{Float64}()
for particle in incoming_particles(processDescription)
push!(inputMasses, mass(particle))
end
outputMasses = Vector{Float64}()
for particle in outgoing_particles(processDescription)
push!(outputMasses, mass(particle))
end
initial_momenta = [
i == length(inputMasses) ? SFourMomentum(1, 0, 0, 0) : SFourMomentum(omega, 0, 0, omega) for
i in 1:length(inputMasses)
]
ss = sqrt(sum(initial_momenta) * sum(initial_momenta))
final_momenta = MetagraphOptimization.generate_physical_massive_moms(RNG, ss, outputMasses)
return (tuple(initial_momenta...), tuple(final_momenta...))
end
# theta ∈ [0, 2π] and phi ∈ [0, 2π]
function congruent_input_momenta_scenario_2(
processDescription::GenericQEDProcess,
omega::Number,
theta::Number,
phi::Number,
)
# -------------
# same as above
# generate an input sample for given e + nk -> e' + k' process, where the nk are equal
inputMasses = Vector{Float64}()
for particle in incoming_particles(processDescription)
push!(inputMasses, mass(particle))
end
outputMasses = Vector{Float64}()
for particle in outgoing_particles(processDescription)
push!(outputMasses, mass(particle))
end
initial_momenta = [
i == length(inputMasses) ? SFourMomentum(1, 0, 0, 0) : SFourMomentum(omega, 0, 0, omega) for
i in 1:length(inputMasses)
]
ss = sqrt(sum(initial_momenta) * sum(initial_momenta))
# up to here
# ----------
# now calculate the final_momenta from omega, cos_theta and phi
n = number_particles(processDescription, Incoming(), Photon())
cos_theta = cos(theta)
omega_prime = (n * omega) / (1 + n * omega * (1 - cos_theta))
k_prime =
omega_prime * SFourMomentum(1, sqrt(1 - cos_theta^2) * cos(phi), sqrt(1 - cos_theta^2) * sin(phi), cos_theta)
p_prime = sum(initial_momenta) - k_prime
final_momenta = (k_prime, p_prime)
return (tuple(initial_momenta...), tuple(final_momenta...))
end
function build_psp(processDescription::GenericQEDProcess, momenta)
return PhaseSpacePoint(
processDescription,
PerturbativeQED(),
PhasespaceDefinition(SphericalCoordinateSystem(), ElectronRestFrame()),
momenta[1],
momenta[2],
)
end
# hack to fix stacksize for threading
with_stacksize(f, n) = fetch(schedule(Task(f, n)))
# scenario 2
N = 1024 # thetas
M = 1024 # phis
K = 64 # omegas
thetas = collect(LinRange(0, 2π, N))
phis = collect(LinRange(0, 2π, M))
omegas = collect(maprange(log, 2e-2, 2e-7, K))
for photons in 1:5
# temp process to generate momenta
println("Generating $(K*N*M) inputs for $photons photons (Scenario 2 grid walk)...")
temp_process = parse_process("k"^photons * "e->ke", QEDModel(), PolX(), SpinUp(), PolX(), SpinUp())
input_momenta =
Array{typeof(congruent_input_momenta_scenario_2(temp_process, omegas[1], thetas[1], phis[1]))}(undef, (K, N, M))
Threads.@threads for k in 1:K
Threads.@threads for i in 1:N
Threads.@threads for j in 1:M
input_momenta[k, i, j] = congruent_input_momenta_scenario_2(temp_process, omegas[k], thetas[i], phis[j])
end
end
end
cu_results = CuArray{Float64}(undef, size(input_momenta))
fill!(cu_results, 0.0)
i = 1
for (in_pol, in_spin, out_pol, out_spin) in
Iterators.product([PolX(), PolY()], [SpinUp(), SpinDown()], [PolX(), PolY()], [SpinUp(), SpinDown()])
print(
"[$i/16] Calculating for spin/pol config: $in_pol, $in_spin -> $out_pol, $out_spin... Preparing inputs... ",
)
process = parse_process("k"^photons * "e->ke", QEDModel(), in_pol, in_spin, out_pol, out_spin)
inputs = Array{typeof(build_psp(process, input_momenta[1, 1, 1]))}(undef, (K, N, M))
#println("input_momenta: $input_momenta")
Threads.@threads for k in 1:K
Threads.@threads for i in 1:N
Threads.@threads for j in 1:M
inputs[k, i, j] = build_psp(process, input_momenta[k, i, j])
end
end
end
cu_inputs = CuArray(inputs)
print("Preparing graph... ")
graph = gen_graph(process)
optimize_to_fixpoint!(ReductionOptimizer(), graph)
print("Preparing function... ")
kernel! = get_cuda_kernel(graph, process, mock_machine())
#func = get_compute_function(graph, process, mock_machine())
print("Calculating... ")
ts = 32
bs = Int64(length(cu_inputs) / 32)
outputs = CuArray{ComplexF64}(undef, size(cu_inputs))
@cuda threads = ts blocks = bs always_inline = true kernel!(cu_inputs, outputs, length(cu_inputs))
CUDA.device_synchronize()
cu_results += abs2.(outputs)
println("Done.")
i += 1
end
println("Writing results")
out_ph_moms = getindex.(getindex.(input_momenta, 2), 1)
out_el_moms = getindex.(getindex.(input_momenta, 2), 2)
results = NamedDimsArray{(:omegas, :thetas, :phis)}(Array(cu_results))
println("Named results array: $(typeof(results))")
@save "$(photons)_congruent_photons_grid.jld2" omegas thetas phis results
end