Add QED Model (#25)

Reviewed-on: Rubydragon/MetagraphOptimization.jl#25
Co-authored-by: Anton Reinhard <anton.reinhard@proton.me>
Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
2023-12-07 02:54:15 +01:00
committed by Anton Reinhard
parent 938bf216e5
commit c90346e948
47 changed files with 4013 additions and 905 deletions

View File

@ -103,3 +103,139 @@ function unroll_symbol_vector(vec::Vector)
end
return result
end
####################
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
# use qedphasespaces directly once released
#
# quick and dirty implementation of the RAMBO algorithm
#
# reference:
# * https://cds.cern.ch/record/164736/files/198601282.pdf
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
####################
function generate_initial_moms(ss, masses)
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
rho1 = sqrt(E1^2 - masses[1]^2)
rho2 = sqrt(E2^2 - masses[2]^2)
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
end
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
function _transform_uni_to_mom(u1, u2, u3, u4)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return SFourMomentum(q0, qx, qy, qz)
end
function _transform_uni_to_mom!(uni_mom, dest)
u1, u2, u3, u4 = Tuple(uni_mom)
cth = 2 * u1 - 1
sth = sqrt(1 - cth^2)
phi = 2 * pi * u2
q0 = -log(u3 * u4)
qx = q0 * sth * cos(phi)
qy = q0 * sth * sin(phi)
qz = q0 * cth
return dest = SFourMomentum(q0, qx, qy, qz)
end
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
function generate_massless_moms(rng, n::Int)
a = Vector{SFourMomentum}(undef, n)
rand!(rng, a)
return map(_transform_uni_to_mom, a)
end
function generate_physical_massless_moms(rng, ss, n)
r_moms = generate_massless_moms(rng, n)
Q = sum(r_moms)
M = sqrt(Q * Q)
fac = -1 / M
Qx = getX(Q)
Qy = getY(Q)
Qz = getZ(Q)
bx = fac * Qx
by = fac * Qy
bz = fac * Qz
gamma = getT(Q) / M
a = 1 / (1 + gamma)
x = ss / M
i = 1
while i <= n
mom = r_moms[i]
mom0 = getT(mom)
mom1 = getX(mom)
mom2 = getY(mom)
mom3 = getZ(mom)
bq = bx * mom1 + by * mom2 + bz * mom3
p0 = x * (gamma * mom0 + bq)
px = x * (mom1 + bx * mom0 + a * bq * bx)
py = x * (mom2 + by * mom0 + a * bq * by)
pz = x * (mom3 + bz * mom0 + a * bq * bz)
r_moms[i] = SFourMomentum(p0, px, py, pz)
i += 1
end
return r_moms
end
function _to_be_solved(xi, masses, p0s, ss)
sum = 0.0
for (i, E) in enumerate(p0s)
sum += sqrt(masses[i]^2 + xi^2 * E^2)
end
return sum - ss
end
function _build_massive_momenta(xi, masses, massless_moms)
vec = SFourMomentum[]
i = 1
while i <= length(massless_moms)
massless_mom = massless_moms[i]
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
kx = xi * getX(massless_mom)
ky = xi * getY(massless_mom)
kz = xi * getZ(massless_mom)
push!(vec, SFourMomentum(k0, kx, ky, kz))
i += 1
end
return vec
end
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
n = length(masses)
massless_moms = generate_physical_massless_moms(rng, ss, n)
energies = getT.(massless_moms)
f = x -> _to_be_solved(x, masses, energies, ss)
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
return _build_massive_momenta(xi, masses, massless_moms)
end