Add QED Model (#25)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#25 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
136
src/utility.jl
136
src/utility.jl
@ -103,3 +103,139 @@ function unroll_symbol_vector(vec::Vector)
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
|
||||
|
||||
####################
|
||||
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
|
||||
# use qedphasespaces directly once released
|
||||
#
|
||||
# quick and dirty implementation of the RAMBO algorithm
|
||||
#
|
||||
# reference:
|
||||
# * https://cds.cern.ch/record/164736/files/198601282.pdf
|
||||
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
|
||||
####################
|
||||
|
||||
function generate_initial_moms(ss, masses)
|
||||
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
|
||||
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
|
||||
|
||||
rho1 = sqrt(E1^2 - masses[1]^2)
|
||||
rho2 = sqrt(E2^2 - masses[2]^2)
|
||||
|
||||
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
|
||||
end
|
||||
|
||||
|
||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
|
||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
|
||||
|
||||
|
||||
function _transform_uni_to_mom(u1, u2, u3, u4)
|
||||
cth = 2 * u1 - 1
|
||||
sth = sqrt(1 - cth^2)
|
||||
phi = 2 * pi * u2
|
||||
q0 = -log(u3 * u4)
|
||||
qx = q0 * sth * cos(phi)
|
||||
qy = q0 * sth * sin(phi)
|
||||
qz = q0 * cth
|
||||
|
||||
return SFourMomentum(q0, qx, qy, qz)
|
||||
end
|
||||
|
||||
function _transform_uni_to_mom!(uni_mom, dest)
|
||||
u1, u2, u3, u4 = Tuple(uni_mom)
|
||||
cth = 2 * u1 - 1
|
||||
sth = sqrt(1 - cth^2)
|
||||
phi = 2 * pi * u2
|
||||
q0 = -log(u3 * u4)
|
||||
qx = q0 * sth * cos(phi)
|
||||
qy = q0 * sth * sin(phi)
|
||||
qz = q0 * cth
|
||||
|
||||
return dest = SFourMomentum(q0, qx, qy, qz)
|
||||
end
|
||||
|
||||
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
|
||||
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
|
||||
|
||||
function generate_massless_moms(rng, n::Int)
|
||||
a = Vector{SFourMomentum}(undef, n)
|
||||
rand!(rng, a)
|
||||
return map(_transform_uni_to_mom, a)
|
||||
end
|
||||
|
||||
function generate_physical_massless_moms(rng, ss, n)
|
||||
r_moms = generate_massless_moms(rng, n)
|
||||
Q = sum(r_moms)
|
||||
M = sqrt(Q * Q)
|
||||
fac = -1 / M
|
||||
Qx = getX(Q)
|
||||
Qy = getY(Q)
|
||||
Qz = getZ(Q)
|
||||
bx = fac * Qx
|
||||
by = fac * Qy
|
||||
bz = fac * Qz
|
||||
gamma = getT(Q) / M
|
||||
a = 1 / (1 + gamma)
|
||||
x = ss / M
|
||||
|
||||
i = 1
|
||||
while i <= n
|
||||
mom = r_moms[i]
|
||||
mom0 = getT(mom)
|
||||
mom1 = getX(mom)
|
||||
mom2 = getY(mom)
|
||||
mom3 = getZ(mom)
|
||||
|
||||
bq = bx * mom1 + by * mom2 + bz * mom3
|
||||
|
||||
p0 = x * (gamma * mom0 + bq)
|
||||
px = x * (mom1 + bx * mom0 + a * bq * bx)
|
||||
py = x * (mom2 + by * mom0 + a * bq * by)
|
||||
pz = x * (mom3 + bz * mom0 + a * bq * bz)
|
||||
|
||||
r_moms[i] = SFourMomentum(p0, px, py, pz)
|
||||
i += 1
|
||||
end
|
||||
return r_moms
|
||||
end
|
||||
|
||||
function _to_be_solved(xi, masses, p0s, ss)
|
||||
sum = 0.0
|
||||
for (i, E) in enumerate(p0s)
|
||||
sum += sqrt(masses[i]^2 + xi^2 * E^2)
|
||||
end
|
||||
return sum - ss
|
||||
end
|
||||
|
||||
function _build_massive_momenta(xi, masses, massless_moms)
|
||||
vec = SFourMomentum[]
|
||||
i = 1
|
||||
while i <= length(massless_moms)
|
||||
massless_mom = massless_moms[i]
|
||||
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
|
||||
|
||||
kx = xi * getX(massless_mom)
|
||||
ky = xi * getY(massless_mom)
|
||||
kz = xi * getZ(massless_mom)
|
||||
|
||||
push!(vec, SFourMomentum(k0, kx, ky, kz))
|
||||
|
||||
i += 1
|
||||
end
|
||||
return vec
|
||||
end
|
||||
|
||||
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
|
||||
|
||||
|
||||
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
|
||||
n = length(masses)
|
||||
massless_moms = generate_physical_massless_moms(rng, ss, n)
|
||||
energies = getT.(massless_moms)
|
||||
f = x -> _to_be_solved(x, masses, energies, ss)
|
||||
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
|
||||
return _build_massive_momenta(xi, masses, massless_moms)
|
||||
end
|
||||
|
Reference in New Issue
Block a user