heterogeneity (#27)
Prepare things to work with heterogeneity, make things work on GPU Reviewed-on: Rubydragon/MetagraphOptimization.jl#27 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
@ -62,21 +62,12 @@ function gen_input_assignment_code(
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbols) in inputSymbols
|
||||
(type, index) = type_index_from_name(model(processDescription), name)
|
||||
p = nothing
|
||||
|
||||
if (index > get(in_particles(processDescription), type, 0))
|
||||
index -= get(in_particles(processDescription), type, 0)
|
||||
@assert index <= out_particles(processDescription)[type] "Too few particles of type $type in input particles for this process"
|
||||
|
||||
p = "filter(x -> typeof(x) <: $type, out_particles($(processInputSymbol)))[$(index)]"
|
||||
else
|
||||
p = "filter(x -> typeof(x) <: $type, in_particles($(processInputSymbol)))[$(index)]"
|
||||
end
|
||||
p = "get_particle($(processInputSymbol), $(type), $(index))"
|
||||
|
||||
for symbol in symbols
|
||||
device = entry_device(machine)
|
||||
evalExpr = eval(gen_access_expr(device, symbol))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr)::ParticleValue{$type} = ParticleValue($p, one(ComplexF64))"))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue{$type, ComplexF64}($p, one(ComplexF64))"))
|
||||
end
|
||||
end
|
||||
|
||||
@ -111,10 +102,12 @@ end
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
If an exception occurs during the execution of the generated code, it will be printed for investigation.
|
||||
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
@ -135,6 +128,8 @@ function execute(graph::DAG, process::AbstractProcessDescription, machine::Machi
|
||||
result = 0
|
||||
try
|
||||
result = @eval $func($input)
|
||||
#functionStr = string(expr)
|
||||
#println("Function:\n$functionStr")
|
||||
catch e
|
||||
println("Error while evaluating: $e")
|
||||
|
||||
|
@ -75,3 +75,7 @@ function operation_effect(estimator::GlobalMetricEstimator, graph::DAG, operatio
|
||||
ce::Float64 = s * compute_effort(task(operation.input))
|
||||
return (data = d, computeEffort = ce, computeIntensity = ce / d)::CDCost
|
||||
end
|
||||
|
||||
function String(::GlobalMetricEstimator)
|
||||
return "global_metric"
|
||||
end
|
||||
|
@ -1,4 +1,5 @@
|
||||
using AccurateArithmetic
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskABC_P, data::ABCParticleValue)
|
||||
@ -75,14 +76,14 @@ function compute(::ComputeTaskABC_S1, data::ABCParticleValue{P})::ABCParticleVal
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskABC_Sum, data::Vector{Float64})
|
||||
compute(::ComputeTaskABC_Sum, data::StaticVector)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskABC_Sum, data::Vector{Float64})::Float64
|
||||
return sum_kbn(data)
|
||||
function compute(::ComputeTaskABC_Sum, data::StaticVector)::Float64
|
||||
return sum(data)
|
||||
end
|
||||
|
||||
"""
|
||||
@ -159,5 +160,7 @@ function get_expression(::ComputeTaskABC_Sum, device::AbstractDevice, inExprs::V
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskABC_Sum(), [$(unroll_symbol_vector(in))])")
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskABC_Sum(), SVector{$(length(inExprs)), Float64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
end
|
||||
|
@ -5,6 +5,20 @@ using ForwardDiff
|
||||
|
||||
ComputeTaskABC_Sum() = ComputeTaskABC_Sum(0)
|
||||
|
||||
function _svector_from_type_in(processDescription::ABCProcessDescription, type, particles)
|
||||
if haskey(in_particles(processDescription), type)
|
||||
return SVector{in_particles(processDescription)[type], type}(filter(x -> typeof(x) <: type, particles))
|
||||
end
|
||||
return SVector{0, type}()
|
||||
end
|
||||
|
||||
function _svector_from_type_out(processDescription::ABCProcessDescription, type, particles)
|
||||
if haskey(out_particles(processDescription), type)
|
||||
return SVector{out_particles(processDescription)[type], type}(filter(x -> typeof(x) <: type, particles))
|
||||
end
|
||||
return SVector{0, type}()
|
||||
end
|
||||
|
||||
"""
|
||||
gen_process_input(processDescription::ABCProcessDescription)
|
||||
|
||||
@ -58,7 +72,15 @@ function gen_process_input(processDescription::ABCProcessDescription)
|
||||
end
|
||||
end
|
||||
|
||||
processInput = ABCProcessInput(processDescription, inputParticles, outputParticles)
|
||||
inA = _svector_from_type_in(processDescription, ParticleA, inputParticles)
|
||||
inB = _svector_from_type_in(processDescription, ParticleB, inputParticles)
|
||||
inC = _svector_from_type_in(processDescription, ParticleC, inputParticles)
|
||||
|
||||
outA = _svector_from_type_out(processDescription, ParticleA, outputParticles)
|
||||
outB = _svector_from_type_out(processDescription, ParticleB, outputParticles)
|
||||
outC = _svector_from_type_out(processDescription, ParticleC, outputParticles)
|
||||
|
||||
processInput = ABCProcessInput(processDescription, inA, inB, inC, outA, outB, outC)
|
||||
|
||||
return return processInput
|
||||
end
|
||||
|
@ -1,3 +1,5 @@
|
||||
using StaticArrays
|
||||
|
||||
import QEDbase.mass
|
||||
|
||||
"""
|
||||
@ -60,27 +62,30 @@ Input for a ABC Process. Contains the [`ABCProcessDescription`](@ref) of the pro
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
struct ABCProcessInput <: AbstractProcessInput
|
||||
struct ABCProcessInput{N1, N2, N3, N4, N5, N6} <: AbstractProcessInput
|
||||
process::ABCProcessDescription
|
||||
inParticles::Vector{ABCParticle}
|
||||
outParticles::Vector{ABCParticle}
|
||||
inA::SVector{N1, ParticleA}
|
||||
inB::SVector{N2, ParticleB}
|
||||
inC::SVector{N3, ParticleC}
|
||||
outA::SVector{N4, ParticleA}
|
||||
outB::SVector{N5, ParticleB}
|
||||
outC::SVector{N6, ParticleC}
|
||||
end
|
||||
|
||||
ABCParticleValue{ParticleType <: ABCParticle} = ParticleValue{ParticleType, ComplexF64}
|
||||
|
||||
"""
|
||||
PARTICLE_MASSES
|
||||
|
||||
A constant dictionary containing the masses of the different [`ABCParticle`](@ref)s.
|
||||
"""
|
||||
const PARTICLE_MASSES = Dict{Type, Float64}(ParticleA => 1.0, ParticleB => 1.0, ParticleC => 0.0)
|
||||
|
||||
"""
|
||||
mass(t::Type{T}) where {T <: ABCParticle}
|
||||
|
||||
Return the mass (at rest) of the given particle type.
|
||||
"""
|
||||
mass(t::Type{T}) where {T <: ABCParticle} = PARTICLE_MASSES[t]
|
||||
mass(::ParticleA) = 1.0
|
||||
mass(::ParticleB) = 1.0
|
||||
mass(::ParticleC) = 0.0
|
||||
|
||||
mass(::Type{ParticleA}) = 1.0
|
||||
mass(::Type{ParticleB}) = 1.0
|
||||
mass(::Type{ParticleC}) = 0.0
|
||||
|
||||
"""
|
||||
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
|
||||
@ -126,7 +131,7 @@ Return the factor of the inner edge with the given (virtual) particle.
|
||||
Takes 10 effective FLOP. (3 here + 7 in square(p))
|
||||
"""
|
||||
function ABC_inner_edge(p::ABCParticle)
|
||||
return 1.0 / (square(p) - mass(typeof(p)) * mass(typeof(p)))
|
||||
return 1.0 / (square(p) - mass(p)^2)
|
||||
end
|
||||
|
||||
"""
|
||||
@ -166,6 +171,10 @@ function ABC_conserve_momentum(p1::ABCParticle, p2::ABCParticle)
|
||||
return p3
|
||||
end
|
||||
|
||||
function copy(process::ABCProcessDescription)
|
||||
return ABCProcessDescription(copy(process.inParticles), copy(process.outParticles))
|
||||
end
|
||||
|
||||
model(::ABCProcessDescription) = ABCModel()
|
||||
model(::ABCProcessInput) = ABCModel()
|
||||
|
||||
@ -195,14 +204,29 @@ function in_particles(process::ABCProcessDescription)
|
||||
return process.inParticles
|
||||
end
|
||||
|
||||
function in_particles(input::ABCProcessInput)
|
||||
return input.inParticles
|
||||
end
|
||||
|
||||
function out_particles(process::ABCProcessDescription)
|
||||
return process.outParticles
|
||||
end
|
||||
|
||||
function out_particles(input::ABCProcessInput)
|
||||
return input.outParticles
|
||||
function get_particle(input::ABCProcessInput, t::Type{Particle}, n::Int)::Particle where {Particle}
|
||||
if (t <: ParticleA)
|
||||
if (n > length(input.inA))
|
||||
return input.outA[n - length(input.inA)]
|
||||
else
|
||||
return input.inA[n]
|
||||
end
|
||||
elseif (t <: ParticleB)
|
||||
if (n > length(input.inB))
|
||||
return input.outB[n - length(input.inB)]
|
||||
else
|
||||
return input.inB[n]
|
||||
end
|
||||
elseif (t <: ParticleC)
|
||||
if (n > length(input.inC))
|
||||
return input.outC[n - length(input.inC)]
|
||||
else
|
||||
return input.inC[n]
|
||||
end
|
||||
end
|
||||
@assert false "Invalid type given"
|
||||
end
|
||||
|
@ -36,15 +36,26 @@ Pretty print an [`ABCProcessInput`](@ref) (with newlines).
|
||||
"""
|
||||
function show(io::IO, processInput::ABCProcessInput)
|
||||
println(io, "Input for $(processInput.process):")
|
||||
println(io, " $(length(processInput.inParticles)) Incoming particles:")
|
||||
for particle in processInput.inParticles
|
||||
println(io, " $particle")
|
||||
println(io, "Incoming particles:")
|
||||
if !isempty(processInput.inA)
|
||||
println(io, " $(processInput.inA)")
|
||||
end
|
||||
println(io, " $(length(processInput.outParticles)) Outgoing Particles:")
|
||||
for particle in processInput.outParticles
|
||||
println(io, " $particle")
|
||||
if !isempty(processInput.inB)
|
||||
println(io, " $(processInput.inB)")
|
||||
end
|
||||
if !isempty(processInput.inC)
|
||||
println(io, " $(processInput.inC)")
|
||||
end
|
||||
println(io, "Outgoing particles:")
|
||||
if !isempty(processInput.outA)
|
||||
println(io, " $(processInput.outA)")
|
||||
end
|
||||
if !isempty(processInput.outB)
|
||||
println(io, " $(processInput.outB)")
|
||||
end
|
||||
if !isempty(processInput.outC)
|
||||
println(io, " $(processInput.outC)")
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -80,6 +80,14 @@ Returns a `<: Vector{AbstractParticle}` object with the values of all outgoing p
|
||||
"""
|
||||
function out_particles end
|
||||
|
||||
"""
|
||||
get_particle(::AbstractProcessInput, t::Type, n::Int)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractProcessInput`](@ref).
|
||||
Returns the `n`th particle of type `t`.
|
||||
"""
|
||||
function get_particle end
|
||||
|
||||
"""
|
||||
parse_process(::AbstractString, ::AbstractPhysicsModel)
|
||||
|
||||
|
@ -1,12 +1,13 @@
|
||||
using StaticArrays
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskQED_P, data::QEDParticleValue)
|
||||
|
||||
Return the particle as is and initialize the Value.
|
||||
"""
|
||||
function compute(::ComputeTaskQED_P, data::QEDParticleValue{P})::QEDParticleValue{P} where {P <: QEDParticle}
|
||||
function compute(::ComputeTaskQED_P, data::QEDParticleValue{P}) where {P <: QEDParticle}
|
||||
# TODO do we actually need this for anything?
|
||||
return QEDParticleValue{P}(data.p, one(DiracMatrix))
|
||||
return ParticleValue{P, DiracMatrix}(data.p, one(DiracMatrix))
|
||||
end
|
||||
|
||||
"""
|
||||
@ -15,7 +16,8 @@ end
|
||||
Compute an outer edge. Return the particle value with the same particle and the value multiplied by an outer_edge factor.
|
||||
"""
|
||||
function compute(::ComputeTaskQED_U, data::PV) where {P <: QEDParticle, PV <: QEDParticleValue{P}}
|
||||
state = base_state(particle(data.p), direction(data.p), momentum(data.p), spin_or_pol(data.p))
|
||||
part::P = data.p
|
||||
state = base_state(particle(part), direction(part), momentum(part), spin_or_pol(part))
|
||||
return ParticleValue{P, typeof(state)}(
|
||||
data.p,
|
||||
state, # will return a SLorentzVector{ComplexF64}, BiSpinor or AdjointBiSpinor
|
||||
@ -34,7 +36,6 @@ function compute(
|
||||
) where {P1 <: QEDParticle, P2 <: QEDParticle, PV1 <: QEDParticleValue{P1}, PV2 <: QEDParticleValue{P2}}
|
||||
p3 = QED_conserve_momentum(data1.p, data2.p)
|
||||
P3 = interaction_result(P1, P2)
|
||||
|
||||
state = QED_vertex()
|
||||
if (typeof(data1.v) <: AdjointBiSpinor)
|
||||
state = data1.v * state
|
||||
@ -47,7 +48,7 @@ function compute(
|
||||
state = state * data2.v
|
||||
end
|
||||
|
||||
dataOut = ParticleValue{P3, typeof(state)}(P3(p3), state)
|
||||
dataOut = ParticleValue{P3, typeof(state)}(P3(momentum(p3)), state)
|
||||
return dataOut
|
||||
end
|
||||
|
||||
@ -64,13 +65,10 @@ function compute(
|
||||
::ComputeTaskQED_S2,
|
||||
data1::ParticleValue{P1},
|
||||
data2::ParticleValue{P2},
|
||||
)::ComplexF64 where {
|
||||
P1 <: Union{AntiFermionStateful, FermionStateful},
|
||||
P2 <: Union{AntiFermionStateful, FermionStateful},
|
||||
}
|
||||
@assert isapprox(data1.p.momentum, data2.p.momentum, rtol = sqrt(eps()), atol = sqrt(eps())) "$(data1.p.momentum) vs. $(data2.p.momentum)"
|
||||
) where {P1 <: Union{AntiFermionStateful, FermionStateful}, P2 <: Union{AntiFermionStateful, FermionStateful}}
|
||||
#@assert isapprox(data1.p.momentum, data2.p.momentum, rtol = sqrt(eps()), atol = sqrt(eps())) "$(data1.p.momentum) vs. $(data2.p.momentum)"
|
||||
|
||||
inner = QED_inner_edge(propagation_result(P1)(data1.p))
|
||||
inner = QED_inner_edge(propagation_result(P1)(momentum(data1.p)))
|
||||
|
||||
# inner edge is just a "scalar", data1 and data2 are bispinor/adjointbispinnor, need to keep correct order
|
||||
if typeof(data1.v) <: BiSpinor
|
||||
@ -80,12 +78,11 @@ function compute(
|
||||
end
|
||||
end
|
||||
|
||||
# TODO: S2 when the particles are photons?
|
||||
function compute(
|
||||
::ComputeTaskQED_S2,
|
||||
data1::ParticleValue{P1},
|
||||
data2::ParticleValue{P2},
|
||||
)::ComplexF64 where {P1 <: PhotonStateful, P2 <: PhotonStateful}
|
||||
) where {P1 <: PhotonStateful, P2 <: PhotonStateful}
|
||||
# TODO: assert that data1 and data2 are opposites
|
||||
inner = QED_inner_edge(data1.p)
|
||||
# inner edge is just a scalar, data1 and data2 are photon states that are just Complex numbers here
|
||||
@ -97,9 +94,9 @@ end
|
||||
|
||||
Compute inner edge (1 input particle, 1 output particle).
|
||||
"""
|
||||
function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P})::QEDParticleValue where {P <: QEDParticle}
|
||||
function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P}) where {P <: QEDParticle}
|
||||
newP = propagation_result(P)
|
||||
new_p = newP(data.p)
|
||||
new_p = newP(momentum(data.p))
|
||||
# inner edge is just a scalar, can multiply from either side
|
||||
if typeof(data.v) <: BiSpinor
|
||||
return ParticleValue(new_p, QED_inner_edge(new_p) * data.v)
|
||||
@ -109,13 +106,13 @@ function compute(::ComputeTaskQED_S1, data::QEDParticleValue{P})::QEDParticleVal
|
||||
end
|
||||
|
||||
"""
|
||||
compute(::ComputeTaskQED_Sum, data::Vector{ComplexF64})
|
||||
compute(::ComputeTaskQED_Sum, data::StaticVector)
|
||||
|
||||
Compute a sum over the vector. Use an algorithm that accounts for accumulated errors in long sums with potentially large differences in magnitude of the summands.
|
||||
|
||||
Linearly many FLOP with growing data.
|
||||
"""
|
||||
function compute(::ComputeTaskQED_Sum, data::Vector{ComplexF64})::ComplexF64
|
||||
function compute(::ComputeTaskQED_Sum, data::StaticVector)::ComplexF64
|
||||
# TODO: want to use sum_kbn here but it doesn't seem to support ComplexF64, do it element-wise?
|
||||
return sum(data)
|
||||
end
|
||||
@ -194,5 +191,7 @@ function get_expression(::ComputeTaskQED_Sum, device::AbstractDevice, inExprs::V
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskQED_Sum(), [$(unroll_symbol_vector(in))])")
|
||||
return Meta.parse(
|
||||
"$out = compute(ComputeTaskQED_Sum(), SVector{$(length(inExprs)), ComplexF64}($(unroll_symbol_vector(in))))",
|
||||
)
|
||||
end
|
||||
|
@ -1,6 +1,16 @@
|
||||
|
||||
ComputeTaskQED_Sum() = ComputeTaskQED_Sum(0)
|
||||
|
||||
function _svector_from_type(processDescription::QEDProcessDescription, type, particles)
|
||||
if haskey(in_particles(processDescription), type)
|
||||
return SVector{in_particles(processDescription)[type], type}(filter(x -> typeof(x) <: type, particles))
|
||||
end
|
||||
if haskey(out_particles(processDescription), type)
|
||||
return SVector{out_particles(processDescription)[type], type}(filter(x -> typeof(x) <: type, particles))
|
||||
end
|
||||
return SVector{0, type}()
|
||||
end
|
||||
|
||||
"""
|
||||
gen_process_input(processDescription::QEDProcessDescription)
|
||||
|
||||
@ -29,30 +39,37 @@ function gen_process_input(processDescription::QEDProcessDescription)
|
||||
massSum += rand(rng[threadid()]) * (length(inputMasses) + length(outputMasses))
|
||||
|
||||
|
||||
inputParticles = Vector{QEDParticle}()
|
||||
particles = Vector{QEDParticle}()
|
||||
initialMomenta = generate_initial_moms(massSum, inputMasses)
|
||||
index = 1
|
||||
for (particle, n) in processDescription.inParticles
|
||||
for _ in 1:n
|
||||
mom = initialMomenta[index]
|
||||
push!(inputParticles, particle(mom))
|
||||
push!(particles, particle(mom))
|
||||
index += 1
|
||||
end
|
||||
end
|
||||
|
||||
outputParticles = Vector{QEDParticle}()
|
||||
final_momenta = generate_physical_massive_moms(rng[threadid()], massSum, outputMasses)
|
||||
index = 1
|
||||
for (particle, n) in processDescription.outParticles
|
||||
for _ in 1:n
|
||||
push!(outputParticles, particle(final_momenta[index]))
|
||||
push!(particles, particle(final_momenta[index]))
|
||||
index += 1
|
||||
end
|
||||
end
|
||||
|
||||
processInput = QEDProcessInput(processDescription, inputParticles, outputParticles)
|
||||
inFerms = _svector_from_type(processDescription, FermionStateful{Incoming, SpinUp}, particles)
|
||||
outFerms = _svector_from_type(processDescription, FermionStateful{Outgoing, SpinUp}, particles)
|
||||
inAntiferms = _svector_from_type(processDescription, AntiFermionStateful{Incoming, SpinUp}, particles)
|
||||
outAntiferms = _svector_from_type(processDescription, AntiFermionStateful{Outgoing, SpinUp}, particles)
|
||||
inPhotons = _svector_from_type(processDescription, PhotonStateful{Incoming, PolX}, particles)
|
||||
outPhotons = _svector_from_type(processDescription, PhotonStateful{Outgoing, PolX}, particles)
|
||||
|
||||
return return processInput
|
||||
processInput =
|
||||
QEDProcessInput(processDescription, inFerms, outFerms, inAntiferms, outAntiferms, inPhotons, outPhotons)
|
||||
|
||||
return processInput
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -82,7 +82,7 @@ end
|
||||
|
||||
function particle_after_tie(p::FeynmanParticle, t::FeynmanTie)
|
||||
if p == t.in1 || p == t.in2
|
||||
return FeynmanParticle(FermionStateful{Incoming}, -1) # placeholder particle and id for tied particles
|
||||
return FeynmanParticle(FermionStateful{Incoming, SpinUp}, -1) # placeholder particle and id for tied particles
|
||||
end
|
||||
return p
|
||||
end
|
||||
|
@ -1,4 +1,5 @@
|
||||
using QEDprocesses
|
||||
using StaticArrays
|
||||
import QEDbase.mass
|
||||
|
||||
# TODO check
|
||||
@ -34,19 +35,6 @@ struct QEDProcessDescription <: AbstractProcessDescription
|
||||
outParticles::Dict{Type{<:QEDParticle{Outgoing}}, Int}
|
||||
end
|
||||
|
||||
"""
|
||||
QEDProcessInput <: AbstractProcessInput
|
||||
|
||||
Input for a QED Process. Contains the [`QEDProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
struct QEDProcessInput <: AbstractProcessInput
|
||||
process::QEDProcessDescription
|
||||
inParticles::Vector{QEDParticle}
|
||||
outParticles::Vector{QEDParticle}
|
||||
end
|
||||
|
||||
QEDParticleValue{ParticleType <: QEDParticle} = Union{
|
||||
ParticleValue{ParticleType, BiSpinor},
|
||||
ParticleValue{ParticleType, AdjointBiSpinor},
|
||||
@ -60,51 +48,44 @@ QEDParticleValue{ParticleType <: QEDParticle} = Union{
|
||||
|
||||
A photon of the [`QEDModel`](@ref) with its state.
|
||||
"""
|
||||
struct PhotonStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
|
||||
struct PhotonStateful{Direction <: ParticleDirection, Pol <: AbstractDefinitePolarization} <: QEDParticle{Direction}
|
||||
momentum::SFourMomentum
|
||||
# this will maybe change to the full polarization vector? or do i need both
|
||||
polarization::AbstractDefinitePolarization
|
||||
end
|
||||
|
||||
PhotonStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
|
||||
PhotonStateful{Direction}(mom, PolX()) # TODO: make allpol possible
|
||||
PhotonStateful{Direction, PolX}(mom)
|
||||
|
||||
PhotonStateful{Dir1}(ph::PhotonStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
|
||||
PhotonStateful{Dir1}(ph.momentum, ph.polarization)
|
||||
PhotonStateful{Dir, Pol}(ph::PhotonStateful) where {Dir, Pol} = PhotonStateful{Dir, Pol}(ph.momentum)
|
||||
|
||||
"""
|
||||
FermionStateful <: QEDParticle
|
||||
|
||||
A fermion of the [`QEDModel`](@ref) with its state.
|
||||
"""
|
||||
struct FermionStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
|
||||
struct FermionStateful{Direction <: ParticleDirection, Spin <: AbstractDefiniteSpin} <: QEDParticle{Direction}
|
||||
momentum::SFourMomentum
|
||||
spin::AbstractDefiniteSpin
|
||||
# TODO: mass for electron/muon/tauon representation?
|
||||
end
|
||||
|
||||
FermionStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
|
||||
FermionStateful{Direction}(mom, SpinUp()) # TODO: make allspin possible
|
||||
FermionStateful{Direction, SpinUp}(mom)
|
||||
|
||||
FermionStateful{Dir1}(f::FermionStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
|
||||
FermionStateful{Dir1}(f.momentum, f.spin)
|
||||
FermionStateful{Dir, Spin}(f::FermionStateful) where {Dir, Spin} = FermionStateful{Dir, Spin}(f.momentum)
|
||||
|
||||
"""
|
||||
AntiFermionStateful <: QEDParticle
|
||||
|
||||
An anti-fermion of the [`QEDModel`](@ref) with its state.
|
||||
"""
|
||||
struct AntiFermionStateful{Direction <: ParticleDirection} <: QEDParticle{Direction}
|
||||
struct AntiFermionStateful{Direction <: ParticleDirection, Spin <: AbstractDefiniteSpin} <: QEDParticle{Direction}
|
||||
momentum::SFourMomentum
|
||||
spin::AbstractDefiniteSpin
|
||||
# TODO: mass for electron/muon/tauon representation?
|
||||
end
|
||||
|
||||
AntiFermionStateful{Direction}(mom::SFourMomentum) where {Direction <: ParticleDirection} =
|
||||
AntiFermionStateful{Direction}(mom, SpinUp()) # TODO: make allspin possible
|
||||
AntiFermionStateful{Direction, SpinUp}(mom)
|
||||
|
||||
AntiFermionStateful{Dir1}(f::AntiFermionStateful{Dir2}) where {Dir1 <: ParticleDirection, Dir2 <: ParticleDirection} =
|
||||
AntiFermionStateful{Dir1}(f.momentum, f.spin)
|
||||
AntiFermionStateful{Dir, Spin}(f::AntiFermionStateful) where {Dir, Spin} = AntiFermionStateful{Dir, Spin}(f.momentum)
|
||||
|
||||
"""
|
||||
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: QEDParticle, T2 <: QEDParticle}
|
||||
@ -115,19 +96,33 @@ function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: QEDParticle
|
||||
@assert false "Invalid interaction between particles of types $t1 and $t2"
|
||||
end
|
||||
|
||||
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{FermionStateful{Outgoing}}) = PhotonStateful{Incoming}
|
||||
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{AntiFermionStateful{Incoming}}) = PhotonStateful{Incoming}
|
||||
interaction_result(::Type{FermionStateful{Incoming}}, ::Type{<:PhotonStateful}) = FermionStateful{Outgoing}
|
||||
interaction_result(
|
||||
::Type{FermionStateful{Incoming, Spin1}},
|
||||
::Type{FermionStateful{Outgoing, Spin2}},
|
||||
) where {Spin1, Spin2} = PhotonStateful{Incoming, PolX}
|
||||
interaction_result(
|
||||
::Type{FermionStateful{Incoming, Spin1}},
|
||||
::Type{AntiFermionStateful{Incoming, Spin2}},
|
||||
) where {Spin1, Spin2} = PhotonStateful{Incoming, PolX}
|
||||
interaction_result(::Type{FermionStateful{Incoming, Spin1}}, ::Type{<:PhotonStateful}) where {Spin1} =
|
||||
FermionStateful{Outgoing, SpinUp}
|
||||
|
||||
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{FermionStateful{Incoming}}) = PhotonStateful{Incoming}
|
||||
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{AntiFermionStateful{Outgoing}}) = PhotonStateful{Incoming}
|
||||
interaction_result(::Type{FermionStateful{Outgoing}}, ::Type{<:PhotonStateful}) = FermionStateful{Incoming}
|
||||
interaction_result(
|
||||
::Type{FermionStateful{Outgoing, Spin1}},
|
||||
::Type{FermionStateful{Incoming, Spin2}},
|
||||
) where {Spin1, Spin2} = PhotonStateful{Incoming, PolX}
|
||||
interaction_result(
|
||||
::Type{FermionStateful{Outgoing, Spin1}},
|
||||
::Type{AntiFermionStateful{Outgoing, Spin2}},
|
||||
) where {Spin1, Spin2} = PhotonStateful{Incoming, PolX}
|
||||
interaction_result(::Type{FermionStateful{Outgoing, Spin1}}, ::Type{<:PhotonStateful}) where {Spin1} =
|
||||
FermionStateful{Incoming, SpinUp}
|
||||
|
||||
# antifermion mirror
|
||||
interaction_result(::Type{AntiFermionStateful{Incoming}}, t2::Type{<:QEDParticle}) =
|
||||
interaction_result(FermionStateful{Outgoing}, t2)
|
||||
interaction_result(::Type{AntiFermionStateful{Outgoing}}, t2::Type{<:QEDParticle}) =
|
||||
interaction_result(FermionStateful{Incoming}, t2)
|
||||
interaction_result(::Type{AntiFermionStateful{Incoming, Spin}}, t2::Type{<:QEDParticle}) where {Spin} =
|
||||
interaction_result(FermionStateful{Outgoing, Spin}, t2)
|
||||
interaction_result(::Type{AntiFermionStateful{Outgoing, Spin}}, t2::Type{<:QEDParticle}) where {Spin} =
|
||||
interaction_result(FermionStateful{Incoming, Spin}, t2)
|
||||
|
||||
# photon commutativity
|
||||
interaction_result(t1::Type{<:PhotonStateful}, t2::Type{<:QEDParticle}) = interaction_result(t2, t1)
|
||||
@ -142,12 +137,18 @@ end
|
||||
|
||||
Return the type of the inverted direction. E.g.
|
||||
"""
|
||||
propagation_result(::Type{FermionStateful{Incoming}}) = FermionStateful{Outgoing}
|
||||
propagation_result(::Type{FermionStateful{Outgoing}}) = FermionStateful{Incoming}
|
||||
propagation_result(::Type{AntiFermionStateful{Incoming}}) = AntiFermionStateful{Outgoing}
|
||||
propagation_result(::Type{AntiFermionStateful{Outgoing}}) = AntiFermionStateful{Incoming}
|
||||
propagation_result(::Type{PhotonStateful{Incoming}}) = PhotonStateful{Outgoing}
|
||||
propagation_result(::Type{PhotonStateful{Outgoing}}) = PhotonStateful{Incoming}
|
||||
propagation_result(::Type{FermionStateful{Incoming, Spin}}) where {Spin <: AbstractDefiniteSpin} =
|
||||
FermionStateful{Outgoing, Spin}
|
||||
propagation_result(::Type{FermionStateful{Outgoing, Spin}}) where {Spin <: AbstractDefiniteSpin} =
|
||||
FermionStateful{Incoming, Spin}
|
||||
propagation_result(::Type{AntiFermionStateful{Incoming, Spin}}) where {Spin <: AbstractDefiniteSpin} =
|
||||
AntiFermionStateful{Outgoing, Spin}
|
||||
propagation_result(::Type{AntiFermionStateful{Outgoing, Spin}}) where {Spin <: AbstractDefiniteSpin} =
|
||||
AntiFermionStateful{Incoming, Spin}
|
||||
propagation_result(::Type{PhotonStateful{Incoming, Pol}}) where {Pol <: AbstractDefinitePolarization} =
|
||||
PhotonStateful{Outgoing, Pol}
|
||||
propagation_result(::Type{PhotonStateful{Outgoing, Pol}}) where {Pol <: AbstractDefinitePolarization} =
|
||||
PhotonStateful{Incoming, Pol}
|
||||
|
||||
"""
|
||||
types(::QEDModel)
|
||||
@ -156,12 +157,12 @@ Return a Vector of the possible types of particle in the [`QEDModel`](@ref).
|
||||
"""
|
||||
function types(::QEDModel)
|
||||
return [
|
||||
PhotonStateful{Incoming},
|
||||
PhotonStateful{Outgoing},
|
||||
FermionStateful{Incoming},
|
||||
FermionStateful{Outgoing},
|
||||
AntiFermionStateful{Incoming},
|
||||
AntiFermionStateful{Outgoing},
|
||||
PhotonStateful{Incoming, PolX},
|
||||
PhotonStateful{Outgoing, PolX},
|
||||
FermionStateful{Incoming, SpinUp},
|
||||
FermionStateful{Outgoing, SpinUp},
|
||||
AntiFermionStateful{Incoming, SpinUp},
|
||||
AntiFermionStateful{Outgoing, SpinUp},
|
||||
]
|
||||
end
|
||||
|
||||
@ -190,17 +191,23 @@ end
|
||||
@inline momentum(p::FermionStateful)::SFourMomentum = p.momentum
|
||||
@inline momentum(p::AntiFermionStateful)::SFourMomentum = p.momentum
|
||||
|
||||
@inline spin_or_pol(p::PhotonStateful)::AbstractPolarization = p.polarization
|
||||
@inline spin_or_pol(p::FermionStateful)::AbstractSpin = p.spin
|
||||
@inline spin_or_pol(p::AntiFermionStateful)::AbstractSpin = p.spin
|
||||
@inline spin_or_pol(p::PhotonStateful{Dir, Pol}) where {Dir, Pol <: AbstractDefinitePolarization} = Pol()
|
||||
@inline spin_or_pol(p::FermionStateful{Dir, Spin}) where {Dir, Spin <: AbstractDefiniteSpin} = Spin()
|
||||
@inline spin_or_pol(p::AntiFermionStateful{Dir, Spin}) where {Dir, Spin <: AbstractDefiniteSpin} = Spin()
|
||||
|
||||
@inline direction(::PhotonStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(::FermionStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(::AntiFermionStateful{Dir}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(
|
||||
::Type{P},
|
||||
) where {P <: Union{FermionStateful{Incoming}, AntiFermionStateful{Incoming}, PhotonStateful{Incoming}}} = Incoming()
|
||||
@inline direction(
|
||||
::Type{P},
|
||||
) where {P <: Union{FermionStateful{Outgoing}, AntiFermionStateful{Outgoing}, PhotonStateful{Outgoing}}} = Outgoing()
|
||||
|
||||
@inline direction(::Type{PhotonStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(::Type{FermionStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(::Type{AntiFermionStateful{Dir}}) where {Dir <: ParticleDirection} = Dir()
|
||||
@inline direction(
|
||||
::P,
|
||||
) where {P <: Union{FermionStateful{Incoming}, AntiFermionStateful{Incoming}, PhotonStateful{Incoming}}} = Incoming()
|
||||
@inline direction(
|
||||
::P,
|
||||
) where {P <: Union{FermionStateful{Outgoing}, AntiFermionStateful{Outgoing}, PhotonStateful{Outgoing}}} = Outgoing()
|
||||
|
||||
@inline isincoming(::QEDParticle{Incoming}) = true
|
||||
@inline isincoming(::QEDParticle{Outgoing}) = false
|
||||
@ -216,12 +223,12 @@ end
|
||||
@inline mass(::Type{<:AntiFermionStateful}) = 1.0
|
||||
@inline mass(::Type{<:PhotonStateful}) = 0.0
|
||||
|
||||
@inline invert_momentum(p::FermionStateful{Dir}) where {Dir <: ParticleDirection} =
|
||||
FermionStateful{Dir}(-p.momentum, p.spin)
|
||||
@inline invert_momentum(p::AntiFermionStateful{Dir}) where {Dir <: ParticleDirection} =
|
||||
AntiFermionStateful{Dir}(-p.momentum, p.spin)
|
||||
@inline invert_momentum(k::PhotonStateful{Dir}) where {Dir <: ParticleDirection} =
|
||||
PhotonStateful{Dir}(-k.momentum, k.polarization)
|
||||
@inline invert_momentum(p::FermionStateful{Dir, Spin}) where {Dir, Spin} =
|
||||
FermionStateful{Dir, Spin}(-p.momentum, p.spin)
|
||||
@inline invert_momentum(p::AntiFermionStateful{Dir, Spin}) where {Dir, Spin} =
|
||||
AntiFermionStateful{Dir, Spin}(-p.momentum, p.spin)
|
||||
@inline invert_momentum(k::PhotonStateful{Dir, Spin}) where {Dir, Spin} =
|
||||
PhotonStateful{Dir, Spin}(-k.momentum, k.polarization)
|
||||
|
||||
|
||||
"""
|
||||
@ -240,10 +247,10 @@ function caninteract(T1::Type{<:QEDParticle}, T2::Type{<:QEDParticle})
|
||||
end
|
||||
|
||||
for (P1, P2) in [(T1, T2), (T2, T1)]
|
||||
if (P1 == FermionStateful{Incoming} && P2 == AntiFermionStateful{Outgoing})
|
||||
if (P1 <: FermionStateful{Incoming} && P2 <: AntiFermionStateful{Outgoing})
|
||||
return false
|
||||
end
|
||||
if (P1 == FermionStateful{Outgoing} && P2 == AntiFermionStateful{Incoming})
|
||||
if (P1 <: FermionStateful{Outgoing} && P2 <: AntiFermionStateful{Incoming})
|
||||
return false
|
||||
end
|
||||
end
|
||||
@ -253,17 +260,17 @@ end
|
||||
|
||||
function type_index_from_name(::QEDModel, name::String)
|
||||
if startswith(name, "ki")
|
||||
return (PhotonStateful{Incoming}, parse(Int, name[3:end]))
|
||||
return (PhotonStateful{Incoming, PolX}, parse(Int, name[3:end]))
|
||||
elseif startswith(name, "ko")
|
||||
return (PhotonStateful{Outgoing}, parse(Int, name[3:end]))
|
||||
return (PhotonStateful{Outgoing, PolX}, parse(Int, name[3:end]))
|
||||
elseif startswith(name, "ei")
|
||||
return (FermionStateful{Incoming}, parse(Int, name[3:end]))
|
||||
return (FermionStateful{Incoming, SpinUp}, parse(Int, name[3:end]))
|
||||
elseif startswith(name, "eo")
|
||||
return (FermionStateful{Outgoing}, parse(Int, name[3:end]))
|
||||
return (FermionStateful{Outgoing, SpinUp}, parse(Int, name[3:end]))
|
||||
elseif startswith(name, "pi")
|
||||
return (AntiFermionStateful{Incoming}, parse(Int, name[3:end]))
|
||||
return (AntiFermionStateful{Incoming, SpinUp}, parse(Int, name[3:end]))
|
||||
elseif startswith(name, "po")
|
||||
return (AntiFermionStateful{Outgoing}, parse(Int, name[3:end]))
|
||||
return (AntiFermionStateful{Outgoing, SpinUp}, parse(Int, name[3:end]))
|
||||
else
|
||||
throw("Invalid name for a particle in the QED model")
|
||||
end
|
||||
@ -291,8 +298,7 @@ Return the factor of a vertex in a QED feynman diagram.
|
||||
end
|
||||
|
||||
@inline function QED_inner_edge(p::QEDParticle)
|
||||
pos_mom = p.momentum
|
||||
return propagator(particle(p), pos_mom)
|
||||
return propagator(particle(p), p.momentum)
|
||||
end
|
||||
|
||||
"""
|
||||
@ -300,24 +306,49 @@ end
|
||||
|
||||
Calculate and return a new particle from two given interacting ones at a vertex.
|
||||
"""
|
||||
function QED_conserve_momentum(p1::QEDParticle, p2::QEDParticle)
|
||||
#println("Conserving momentum of \n$(direction(p1)) $(p1)\n and \n$(direction(p2)) $(p2)")
|
||||
T3 = interaction_result(typeof(p1), typeof(p2))
|
||||
# TODO: probably also need to do something about the spin/pol
|
||||
function QED_conserve_momentum(
|
||||
p1::P1,
|
||||
p2::P2,
|
||||
) where {
|
||||
Dir1 <: ParticleDirection,
|
||||
Dir2 <: ParticleDirection,
|
||||
SpinPol1 <: AbstractSpinOrPolarization,
|
||||
SpinPol2 <: AbstractSpinOrPolarization,
|
||||
P1 <: Union{FermionStateful{Dir1, SpinPol1}, AntiFermionStateful{Dir1, SpinPol1}, PhotonStateful{Dir1, SpinPol1}},
|
||||
P2 <: Union{FermionStateful{Dir2, SpinPol2}, AntiFermionStateful{Dir2, SpinPol2}, PhotonStateful{Dir2, SpinPol2}},
|
||||
}
|
||||
P3 = interaction_result(P1, P2)
|
||||
p1_mom = p1.momentum
|
||||
if (typeof(direction(p1)) <: Outgoing)
|
||||
if (Dir1 <: Outgoing)
|
||||
p1_mom *= -1
|
||||
end
|
||||
p2_mom = p2.momentum
|
||||
if (typeof(direction(p2)) <: Outgoing)
|
||||
if (Dir2 <: Outgoing)
|
||||
p2_mom *= -1
|
||||
end
|
||||
|
||||
p3_mom = p1_mom + p2_mom
|
||||
if (typeof(direction(T3)) <: Incoming)
|
||||
return T3(-p3_mom)
|
||||
if (typeof(direction(P3)) <: Incoming)
|
||||
return P3(-p3_mom)
|
||||
end
|
||||
return T3(p3_mom)
|
||||
return P3(p3_mom)
|
||||
end
|
||||
|
||||
"""
|
||||
QEDProcessInput <: AbstractProcessInput
|
||||
|
||||
Input for a QED Process. Contains the [`QEDProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
struct QEDProcessInput{N1, N2, N3, N4, N5, N6} <: AbstractProcessInput
|
||||
process::QEDProcessDescription
|
||||
inFerms::SVector{N1, FermionStateful{Incoming, SpinUp}}
|
||||
outFerms::SVector{N2, FermionStateful{Outgoing, SpinUp}}
|
||||
inAntiferms::SVector{N3, AntiFermionStateful{Incoming, SpinUp}}
|
||||
outAntiferms::SVector{N4, AntiFermionStateful{Outgoing, SpinUp}}
|
||||
inPhotons::SVector{N5, PhotonStateful{Incoming, PolX}}
|
||||
outPhotons::SVector{N6, PhotonStateful{Outgoing, PolX}}
|
||||
end
|
||||
|
||||
"""
|
||||
@ -328,6 +359,10 @@ Return the model of this process description.
|
||||
model(::QEDProcessDescription) = QEDModel()
|
||||
model(::QEDProcessInput) = QEDModel()
|
||||
|
||||
function copy(process::QEDProcessDescription)
|
||||
return QEDProcessDescription(copy(process.inParticles), copy(process.outParticles))
|
||||
end
|
||||
|
||||
==(p1::QEDProcessDescription, p2::QEDProcessDescription) =
|
||||
p1.inParticles == p2.inParticles && p1.outParticles == p2.outParticles
|
||||
|
||||
@ -335,14 +370,23 @@ function in_particles(process::QEDProcessDescription)
|
||||
return process.inParticles
|
||||
end
|
||||
|
||||
function in_particles(input::QEDProcessInput)
|
||||
return input.inParticles
|
||||
end
|
||||
|
||||
function out_particles(process::QEDProcessDescription)
|
||||
return process.outParticles
|
||||
end
|
||||
|
||||
function out_particles(input::QEDProcessInput)
|
||||
return input.outParticles
|
||||
function get_particle(input::QEDProcessInput, t::Type{Particle}, n::Int)::Particle where {Particle}
|
||||
if (t <: FermionStateful{Incoming})
|
||||
return input.inFerms[n]
|
||||
elseif (t <: FermionStateful{Outgoing})
|
||||
return input.outFerms[n]
|
||||
elseif (t <: AntiFermionStateful{Incoming})
|
||||
return input.inAntiferms[n]
|
||||
elseif (t <: AntiFermionStateful{Outgoing})
|
||||
return input.outAntiferms[n]
|
||||
elseif (t <: PhotonStateful{Incoming})
|
||||
return input.inPhotons[n]
|
||||
elseif (t <: PhotonStateful{Outgoing})
|
||||
return input.outPhotons[n]
|
||||
end
|
||||
@assert false "Invalid type given"
|
||||
end
|
||||
|
@ -32,20 +32,63 @@ function show(io::IO, process::QEDProcessDescription)
|
||||
return nothing
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
String(process::QEDProcessDescription)
|
||||
|
||||
Create a short string suitable as a filename or similar, describing the given process.
|
||||
|
||||
```jldoctest
|
||||
julia> using MetagraphOptimization
|
||||
|
||||
julia> String(parse_process("ke->ke", QEDModel()))
|
||||
qed_ke-ke
|
||||
|
||||
julia> print(parse_process("kk->ep", QEDModel()))
|
||||
qed_kk-ep
|
||||
```
|
||||
"""
|
||||
function String(process::QEDProcessDescription)
|
||||
# types() gives the types in order (QED) instead of random like keys() would
|
||||
str = "qed_"
|
||||
for type in types(QEDModel())
|
||||
for _ in 1:get(process.inParticles, type, 0)
|
||||
str = str * String(type)
|
||||
end
|
||||
end
|
||||
str = str * "-"
|
||||
for type in types(QEDModel())
|
||||
for _ in 1:get(process.outParticles, type, 0)
|
||||
str = str * String(type)
|
||||
end
|
||||
end
|
||||
return str
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, processInput::QEDProcessInput)
|
||||
|
||||
Pretty print an [`QEDProcessInput`](@ref) (with newlines).
|
||||
Pretty print a [`QEDProcessInput`](@ref) (with newlines).
|
||||
"""
|
||||
function show(io::IO, processInput::QEDProcessInput)
|
||||
println(io, "Input for $(processInput.process):")
|
||||
println(io, " $(length(processInput.inParticles)) Incoming particles:")
|
||||
for particle in processInput.inParticles
|
||||
println(io, " $particle")
|
||||
if !isempty(processInput.inFerms)
|
||||
println(io, " $(processInput.inFerms)")
|
||||
end
|
||||
println(io, " $(length(processInput.outParticles)) Outgoing Particles:")
|
||||
for particle in processInput.outParticles
|
||||
println(io, " $particle")
|
||||
if !isempty(processInput.outFerms)
|
||||
println(io, " $(processInput.outFerms)")
|
||||
end
|
||||
if !isempty(processInput.inAntiferms)
|
||||
println(io, " $(processInput.inAntiferms)")
|
||||
end
|
||||
if !isempty(processInput.outAntiferms)
|
||||
println(io, " $(processInput.outAntiferms)")
|
||||
end
|
||||
if !isempty(processInput.inPhotons)
|
||||
println(io, " $(processInput.inPhotons)")
|
||||
end
|
||||
if !isempty(processInput.outPhotons)
|
||||
println(io, " $(processInput.outPhotons)")
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
@ -53,7 +96,7 @@ end
|
||||
"""
|
||||
show(io::IO, particle::T) where {T <: QEDParticle}
|
||||
|
||||
Pretty print an [`QEDParticle`](@ref) (no newlines).
|
||||
Pretty print a [`QEDParticle`](@ref) (no newlines).
|
||||
"""
|
||||
function show(io::IO, particle::T) where {T <: QEDParticle}
|
||||
print(io, "$(String(typeof(particle))): $(particle.momentum)")
|
||||
|
@ -3,7 +3,7 @@ using UUIDs
|
||||
using Base.Threads
|
||||
|
||||
# TODO: reliably find out how many threads we're running with (nthreads() returns 1 when precompiling :/)
|
||||
rng = [Random.MersenneTwister(0) for _ in 1:32]
|
||||
rng = [Random.MersenneTwister(0) for _ in 1:64]
|
||||
|
||||
"""
|
||||
Node
|
||||
|
@ -71,3 +71,7 @@ function optimize_to_fixpoint!(optimizer::GreedyOptimizer, graph::DAG)
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
|
||||
function String(optimizer::GreedyOptimizer)
|
||||
return "greedy_optimizer_$(optimizer.estimator)"
|
||||
end
|
||||
|
@ -47,3 +47,7 @@ function optimize_step!(optimizer::RandomWalkOptimizer, graph::DAG)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function String(::RandomWalkOptimizer)
|
||||
return "random_walker"
|
||||
end
|
||||
|
@ -28,3 +28,7 @@ function optimize_to_fixpoint!(optimizer::ReductionOptimizer, graph::DAG)
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
|
||||
function String(::ReductionOptimizer)
|
||||
return "reduction_optimizer"
|
||||
end
|
||||
|
Reference in New Issue
Block a user