Add scheduling, machine info, caching strategies and devices (#9)
Reviewed-on: Rubydragon/MetagraphOptimization.jl#9 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
@ -29,7 +29,7 @@ export children
|
||||
export compute
|
||||
export get_properties
|
||||
export get_exit_node
|
||||
export is_valid
|
||||
export is_valid, is_scheduled
|
||||
|
||||
export Operation
|
||||
export AppliedOperation
|
||||
@ -42,7 +42,6 @@ export can_pop
|
||||
export reset_graph!
|
||||
export get_operations
|
||||
|
||||
export parse_abc
|
||||
export ComputeTaskP
|
||||
export ComputeTaskS1
|
||||
export ComputeTaskS2
|
||||
@ -51,9 +50,15 @@ export ComputeTaskU
|
||||
export ComputeTaskSum
|
||||
|
||||
export execute
|
||||
export gen_particles
|
||||
export parse_dag, parse_process
|
||||
export gen_process_input
|
||||
export get_compute_function
|
||||
export ParticleValue
|
||||
export Particle
|
||||
export ParticleA, ParticleB, ParticleC
|
||||
export ABCProcessDescription, ABCProcessInput, ABCModel
|
||||
|
||||
export Machine
|
||||
export get_machine_info
|
||||
|
||||
export ==, in, show, isempty, delete!, length
|
||||
|
||||
@ -72,6 +77,7 @@ import Base.insert!
|
||||
import Base.collect
|
||||
|
||||
|
||||
include("devices/interface.jl")
|
||||
include("task/type.jl")
|
||||
include("node/type.jl")
|
||||
include("diff/type.jl")
|
||||
@ -111,15 +117,34 @@ include("properties/utility.jl")
|
||||
|
||||
include("task/create.jl")
|
||||
include("task/compare.jl")
|
||||
include("task/compute.jl")
|
||||
include("task/print.jl")
|
||||
include("task/properties.jl")
|
||||
|
||||
include("models/interface.jl")
|
||||
include("models/print.jl")
|
||||
|
||||
include("models/abc/types.jl")
|
||||
include("models/abc/particle.jl")
|
||||
include("models/abc/compute.jl")
|
||||
include("models/abc/create.jl")
|
||||
include("models/abc/properties.jl")
|
||||
include("models/abc/parse.jl")
|
||||
include("models/abc/print.jl")
|
||||
|
||||
include("devices/measure.jl")
|
||||
include("devices/detect.jl")
|
||||
include("devices/impl.jl")
|
||||
|
||||
include("devices/numa/impl.jl")
|
||||
include("devices/cuda/impl.jl")
|
||||
# can currently not use AMDGPU because of incompatability with the newest rocm drivers
|
||||
# include("devices/rocm/impl.jl")
|
||||
# oneapi seems also broken for now
|
||||
# include("devices/oneapi/impl.jl")
|
||||
|
||||
include("scheduler/interface.jl")
|
||||
include("scheduler/greedy.jl")
|
||||
|
||||
include("code_gen/main.jl")
|
||||
|
||||
|
@ -1,126 +1,157 @@
|
||||
using DataStructures
|
||||
|
||||
"""
|
||||
gen_code(graph::DAG)
|
||||
|
||||
Generate the code for a given graph. The return value is a tuple of:
|
||||
Generate the code for a given graph. The return value is a named tuple of:
|
||||
|
||||
- `code::Expr`: The julia expression containing the code for the whole graph.
|
||||
- `inputSymbols::Dict{String, Symbol}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on.
|
||||
- `outputSymbol::Symbol`: The symbol of the final calculated value
|
||||
|
||||
See also: [`execute`](@ref)
|
||||
"""
|
||||
function gen_code(graph::DAG)
|
||||
code = Vector{Expr}()
|
||||
sizehint!(code, length(graph.nodes))
|
||||
function gen_code(graph::DAG, machine::Machine)
|
||||
sched = schedule_dag(GreedyScheduler(), graph, machine)
|
||||
|
||||
nodeQueue = PriorityQueue{Node, Int}()
|
||||
inputSyms = Dict{String, Symbol}()
|
||||
codeAcc = Vector{Expr}()
|
||||
sizehint!(codeAcc, length(graph.nodes))
|
||||
|
||||
# use a priority equal to the number of unseen children -> 0 are nodes that can be added
|
||||
for node in sched
|
||||
# TODO: this is kind of ugly, should init nodes be scheduled differently from the rest?
|
||||
if (node isa DataTaskNode && length(node.children) == 0)
|
||||
push!(codeAcc, get_init_expression(node, entry_device(machine)))
|
||||
continue
|
||||
end
|
||||
push!(codeAcc, get_expression(node))
|
||||
end
|
||||
|
||||
# get inSymbols
|
||||
inputSyms = Dict{String, Vector{Symbol}}()
|
||||
for node in get_entry_nodes(graph)
|
||||
enqueue!(nodeQueue, node => 0)
|
||||
push!(inputSyms, node.name => Symbol("data_$(to_var_name(node.id))_in"))
|
||||
if !haskey(inputSyms, node.name)
|
||||
inputSyms[node.name] = Vector{Symbol}()
|
||||
end
|
||||
|
||||
push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in"))
|
||||
end
|
||||
|
||||
node = nothing
|
||||
while !isempty(nodeQueue)
|
||||
@assert peek(nodeQueue)[2] == 0
|
||||
node = dequeue!(nodeQueue)
|
||||
# get outSymbol
|
||||
outSym = Symbol(to_var_name(get_exit_node(graph).id))
|
||||
|
||||
push!(code, get_expression(node))
|
||||
for parent in node.parents
|
||||
# reduce the priority of all parents by one
|
||||
if (!haskey(nodeQueue, parent))
|
||||
enqueue!(nodeQueue, parent => length(parent.children) - 1)
|
||||
else
|
||||
nodeQueue[parent] = nodeQueue[parent] - 1
|
||||
end
|
||||
return (code = Expr(:block, codeAcc...), inputSymbols = inputSyms, outputSymbol = outSym)
|
||||
end
|
||||
|
||||
function gen_cache_init_code(machine::Machine)
|
||||
initializeCaches = Vector{Expr}()
|
||||
|
||||
for device in machine.devices
|
||||
push!(initializeCaches, gen_cache_init_code(device))
|
||||
end
|
||||
|
||||
return Expr(:block, initializeCaches...)
|
||||
end
|
||||
|
||||
function gen_input_assignment_code(
|
||||
inputSymbols::Dict{String, Vector{Symbol}},
|
||||
processDescription::AbstractProcessDescription,
|
||||
machine::Machine,
|
||||
processInputSymbol::Symbol = :input,
|
||||
)
|
||||
@assert length(inputSymbols) >=
|
||||
sum(values(in_particles(processDescription))) + sum(values(out_particles(processDescription))) "Number of input Symbols is smaller than the number of particles in the process description"
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbols) in inputSymbols
|
||||
type = type_from_name(name)
|
||||
index = parse(Int, name[2:end])
|
||||
|
||||
p = nothing
|
||||
|
||||
if (index > in_particles(processDescription)[type])
|
||||
index -= in_particles(processDescription)[type]
|
||||
@assert index <= out_particles(processDescription)[type] "Too few particles of type $type in input particles for this process"
|
||||
|
||||
p = "filter(x -> typeof(x) <: $type, out_particles($(processInputSymbol)))[$(index)]"
|
||||
else
|
||||
p = "filter(x -> typeof(x) <: $type, in_particles($(processInputSymbol)))[$(index)]"
|
||||
end
|
||||
|
||||
for symbol in symbols
|
||||
# TODO: how to get the "default" cpu device?
|
||||
device = entry_device(machine)
|
||||
evalExpr = eval(gen_access_expr(device, symbol))
|
||||
push!(assignInputs, Meta.parse("$(evalExpr) = ParticleValue($p, 1.0)"))
|
||||
end
|
||||
end
|
||||
|
||||
# node is now the last node we looked at -> the output node
|
||||
outSym = Symbol("data_$(to_var_name(node.id))")
|
||||
return Expr(:block, assignInputs...)
|
||||
end
|
||||
|
||||
return (
|
||||
code = Expr(:block, code...),
|
||||
inputSymbols = inputSyms,
|
||||
outputSymbol = outSym,
|
||||
"""
|
||||
get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
|
||||
Return a function of signature `compute_<id>(input::AbstractProcessInput)`, which will return the result of the DAG computation on the given input.
|
||||
"""
|
||||
function get_compute_function(graph::DAG, process::AbstractProcessDescription, machine::Machine)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
func = eval(expr)
|
||||
|
||||
return func
|
||||
end
|
||||
|
||||
"""
|
||||
execute(generated_code, input::Dict{ParticleType, Vector{Particle}})
|
||||
execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
|
||||
Execute the given `generated_code` (as returned by [`gen_code`](@ref)) on the given input particles.
|
||||
Execute the code of the given `graph` on the given input particles.
|
||||
|
||||
This is essentially shorthand for
|
||||
```julia
|
||||
compute_graph = get_compute_function(graph, process)
|
||||
result = compute_graph(particles)
|
||||
```
|
||||
|
||||
See also: [`parse_dag`](@ref), [`parse_process`](@ref), [`gen_process_input`](@ref)
|
||||
"""
|
||||
function execute(generated_code, input::Dict{ParticleType, Vector{Particle}})
|
||||
(code, inputSymbols, outputSymbol) = generated_code
|
||||
function execute(graph::DAG, process::AbstractProcessDescription, machine::Machine, input::AbstractProcessInput)
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph, machine)
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbol) in inputSymbols
|
||||
type = nothing
|
||||
if startswith(name, "A")
|
||||
type = A
|
||||
elseif startswith(name, "B")
|
||||
type = B
|
||||
else
|
||||
type = C
|
||||
initCaches = gen_cache_init_code(machine)
|
||||
assignInputs = gen_input_assignment_code(inputSymbols, process, machine, :input)
|
||||
|
||||
|
||||
functionId = to_var_name(UUIDs.uuid1(rng[1]))
|
||||
resSym = eval(gen_access_expr(entry_device(machine), outputSymbol))
|
||||
expr = Meta.parse(
|
||||
"function compute_$(functionId)(input::AbstractProcessInput) $initCaches; $assignInputs; $code; return $resSym; end",
|
||||
)
|
||||
func = eval(expr)
|
||||
|
||||
result = 0
|
||||
try
|
||||
result = @eval $func($input)
|
||||
catch e
|
||||
println("Error while evaluating: $e")
|
||||
|
||||
# if we find a uuid in the exception we can color it in so it's easier to spot
|
||||
uuidRegex = r"[0-9a-f]{8}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{4}_[0-9a-f]{12}"
|
||||
m = match(uuidRegex, string(e))
|
||||
|
||||
functionStr = string(expr)
|
||||
if (isa(m, RegexMatch))
|
||||
functionStr = replace(functionStr, m.match => "\033[31m$(m.match)\033[0m")
|
||||
end
|
||||
index = parse(Int, name[2:end])
|
||||
|
||||
push!(
|
||||
assignInputs,
|
||||
Meta.parse(
|
||||
"$(symbol) = ParticleValue(Particle($(input[type][index]).P0, $(input[type][index]).P1, $(input[type][index]).P2, $(input[type][index]).P3, $(type)), 1.0)",
|
||||
),
|
||||
)
|
||||
println("Function:\n$functionStr")
|
||||
@assert false
|
||||
end
|
||||
|
||||
assignInputs = Expr(:block, assignInputs...)
|
||||
eval(assignInputs)
|
||||
eval(code)
|
||||
|
||||
eval(Meta.parse("result = $outputSymbol"))
|
||||
return result
|
||||
end
|
||||
|
||||
"""
|
||||
execute(graph::DAG, input::Dict{ParticleType, Vector{Particle}})
|
||||
|
||||
Execute the given `generated_code` (as returned by [`gen_code`](@ref)) on the given input particles.
|
||||
The input particles should be sorted correctly into the dictionary to their according [`ParticleType`](@ref)s.
|
||||
|
||||
See also: [`gen_particles`](@ref)
|
||||
"""
|
||||
function execute(graph::DAG, input::Dict{ParticleType, Vector{Particle}})
|
||||
(code, inputSymbols, outputSymbol) = gen_code(graph)
|
||||
|
||||
assignInputs = Vector{Expr}()
|
||||
for (name, symbol) in inputSymbols
|
||||
type = nothing
|
||||
if startswith(name, "A")
|
||||
type = A
|
||||
elseif startswith(name, "B")
|
||||
type = B
|
||||
else
|
||||
type = C
|
||||
end
|
||||
index = parse(Int, name[2:end])
|
||||
|
||||
push!(
|
||||
assignInputs,
|
||||
Meta.parse(
|
||||
"$(symbol) = ParticleValue(Particle($(input[type][index]).P0, $(input[type][index]).P1, $(input[type][index]).P2, $(input[type][index]).P3, $(type)), 1.0)",
|
||||
),
|
||||
)
|
||||
end
|
||||
|
||||
assignInputs = Expr(:block, assignInputs...)
|
||||
eval(assignInputs)
|
||||
eval(code)
|
||||
|
||||
eval(Meta.parse("result = $outputSymbol"))
|
||||
return result
|
||||
end
|
||||
|
53
src/devices/cuda/impl.jl
Normal file
53
src/devices/cuda/impl.jl
Normal file
@ -0,0 +1,53 @@
|
||||
using CUDA
|
||||
|
||||
"""
|
||||
CUDAGPU <: AbstractGPU
|
||||
|
||||
Representation of a specific CUDA GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
|
||||
"""
|
||||
mutable struct CUDAGPU <: AbstractGPU
|
||||
device::Any # TODO: what's the cuda device type?
|
||||
cacheStrategy::CacheStrategy
|
||||
FLOPS::Float64
|
||||
end
|
||||
|
||||
push!(DEVICE_TYPES, CUDAGPU)
|
||||
|
||||
CACHE_STRATEGIES[CUDAGPU] = [LocalVariables()]
|
||||
|
||||
default_strategy(::Type{T}) where {T <: CUDAGPU} = LocalVariables()
|
||||
|
||||
function measure_device!(device::CUDAGPU; verbose::Bool)
|
||||
if verbose
|
||||
println("Measuring CUDA GPU $(device.device)")
|
||||
end
|
||||
|
||||
# TODO implement
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
get_devices(deviceType::Type{T}; verbose::Bool) where {T <: CUDAGPU}
|
||||
|
||||
Return a Vector of [`CUDAGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
|
||||
"""
|
||||
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: CUDAGPU}
|
||||
devices = Vector{AbstractDevice}()
|
||||
|
||||
if !CUDA.functional()
|
||||
if verbose
|
||||
println("CUDA is non-functional")
|
||||
end
|
||||
return devices
|
||||
end
|
||||
|
||||
CUDADevices = CUDA.devices()
|
||||
if verbose
|
||||
println("Found $(length(CUDADevices)) CUDA devices")
|
||||
end
|
||||
for device in CUDADevices
|
||||
push!(devices, CUDAGPU(device, default_strategy(CUDAGPU), -1))
|
||||
end
|
||||
|
||||
return devices
|
||||
end
|
23
src/devices/detect.jl
Normal file
23
src/devices/detect.jl
Normal file
@ -0,0 +1,23 @@
|
||||
|
||||
"""
|
||||
get_machine_info(verbose::Bool)
|
||||
|
||||
Return the [`Machine`](@ref) currently running on. The parameter `verbose` defaults to true when interactive.
|
||||
"""
|
||||
function get_machine_info(; verbose::Bool = Base.is_interactive)
|
||||
devices = Vector{AbstractDevice}()
|
||||
|
||||
for device in device_types()
|
||||
devs = get_devices(device, verbose = verbose)
|
||||
for dev in devs
|
||||
push!(devices, dev)
|
||||
end
|
||||
end
|
||||
|
||||
noDevices = length(devices)
|
||||
@assert noDevices > 0 "No devices were found, but at least one NUMA node should always be available!"
|
||||
|
||||
transferRates = Matrix{Float64}(undef, noDevices, noDevices)
|
||||
fill!(transferRates, -1)
|
||||
return Machine(devices, transferRates)
|
||||
end
|
52
src/devices/impl.jl
Normal file
52
src/devices/impl.jl
Normal file
@ -0,0 +1,52 @@
|
||||
"""
|
||||
device_types()
|
||||
|
||||
Return a vector of available and implemented device types.
|
||||
|
||||
See also: [`DEVICE_TYPES`](@ref)
|
||||
"""
|
||||
function device_types()
|
||||
return DEVICE_TYPES
|
||||
end
|
||||
|
||||
"""
|
||||
entry_device(machine::Machine)
|
||||
|
||||
Return the "entry" device, i.e., the device that starts CPU threads and GPU kernels, and takes input values and returns the output value.
|
||||
"""
|
||||
function entry_device(machine::Machine)
|
||||
return machine.devices[1]
|
||||
end
|
||||
|
||||
"""
|
||||
strategies(t::Type{T}) where {T <: AbstractDevice}
|
||||
|
||||
Return a vector of available [`CacheStrategy`](@ref)s for the given [`AbstractDevice`](@ref).
|
||||
The caching strategies are used in code generation.
|
||||
"""
|
||||
function strategies(t::Type{T}) where {T <: AbstractDevice}
|
||||
if !haskey(CACHE_STRATEGIES, t)
|
||||
error("Trying to get strategies for $T, but it has no strategies defined!")
|
||||
end
|
||||
|
||||
return CACHE_STRATEGIES[t]
|
||||
end
|
||||
|
||||
"""
|
||||
cache_strategy(device::AbstractDevice)
|
||||
|
||||
Returns the cache strategy set for this device.
|
||||
"""
|
||||
function cache_strategy(device::AbstractDevice)
|
||||
return device.cacheStrategy
|
||||
end
|
||||
|
||||
"""
|
||||
set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy)
|
||||
|
||||
Sets the device's cache strategy. After this call, [`cache_strategy`](@ref) should return `cacheStrategy` on the given device.
|
||||
"""
|
||||
function set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy)
|
||||
device.cacheStrategy = cacheStrategy
|
||||
return nothing
|
||||
end
|
108
src/devices/interface.jl
Normal file
108
src/devices/interface.jl
Normal file
@ -0,0 +1,108 @@
|
||||
"""
|
||||
AbstractDevice
|
||||
|
||||
Abstract base type for every device, like GPUs, CPUs or any other compute devices.
|
||||
Every implementation needs to implement various functions and needs a member `cacheStrategy`.
|
||||
"""
|
||||
abstract type AbstractDevice end
|
||||
|
||||
abstract type AbstractCPU <: AbstractDevice end
|
||||
|
||||
abstract type AbstractGPU <: AbstractDevice end
|
||||
|
||||
"""
|
||||
Machine
|
||||
|
||||
A representation of a machine to execute on. Contains information about its architecture (CPUs, GPUs, maybe more). This representation can be used to make a more accurate cost prediction of a [`DAG`](@ref) state.
|
||||
|
||||
See also: [`Scheduler`](@ref)
|
||||
"""
|
||||
struct Machine
|
||||
devices::Vector{AbstractDevice}
|
||||
|
||||
transferRates::Matrix{Float64}
|
||||
end
|
||||
|
||||
"""
|
||||
CacheStrategy
|
||||
|
||||
Abstract base type for caching strategies.
|
||||
|
||||
See also: [`strategies`](@ref)
|
||||
"""
|
||||
abstract type CacheStrategy end
|
||||
|
||||
"""
|
||||
LocalVariables <: CacheStrategy
|
||||
|
||||
A caching strategy relying solely on local variables for every input and output.
|
||||
|
||||
Implements the [`CacheStrategy`](@ref) interface.
|
||||
"""
|
||||
struct LocalVariables <: CacheStrategy end
|
||||
|
||||
"""
|
||||
Dictionary <: CacheStrategy
|
||||
|
||||
A caching strategy relying on a dictionary of Symbols to store every input and output.
|
||||
|
||||
Implements the [`CacheStrategy`](@ref) interface.
|
||||
"""
|
||||
struct Dictionary <: CacheStrategy end
|
||||
|
||||
"""
|
||||
DEVICE_TYPES::Vector{Type}
|
||||
|
||||
Global vector of available and implemented device types. Each implementation of a [`AbstractDevice`](@ref) should add its concrete type to this vector.
|
||||
|
||||
See also: [`device_types`](@ref), [`get_devices`](@ref)
|
||||
"""
|
||||
DEVICE_TYPES = Vector{Type}()
|
||||
|
||||
"""
|
||||
CACHE_STRATEGIES::Dict{Type{AbstractDevice}, Symbol}
|
||||
|
||||
Global dictionary of available caching strategies per device. Each implementation of [`AbstractDevice`](@ref) should add its available strategies to the dictionary.
|
||||
|
||||
See also: [`strategies`](@ref)
|
||||
"""
|
||||
CACHE_STRATEGIES = Dict{Type, Vector{CacheStrategy}}()
|
||||
|
||||
"""
|
||||
default_strategy(deviceType::Type{T}) where {T <: AbstractDevice}
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns the default [`CacheStrategy`](@ref) to use on the given device type.
|
||||
See also: [`cache_strategy`](@ref), [`set_cache_strategy`](@ref)
|
||||
"""
|
||||
function default_strategy end
|
||||
|
||||
"""
|
||||
get_devices(t::Type{T}; verbose::Bool) where {T <: AbstractDevice}
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns a `Vector{Type}` of the devices for the given [`AbstractDevice`](@ref) Type available on the current machine.
|
||||
"""
|
||||
function get_devices end
|
||||
|
||||
"""
|
||||
measure_device!(device::AbstractDevice; verbose::Bool)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Measures the compute speed of the given device and writes into it.
|
||||
"""
|
||||
function measure_device! end
|
||||
|
||||
"""
|
||||
gen_cache_init_code(device::AbstractDevice)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref). Returns an `Expr` initializing this device's variable cache.
|
||||
|
||||
The strategy is a symbol
|
||||
"""
|
||||
function gen_cache_init_code end
|
||||
|
||||
"""
|
||||
gen_access_expr(device::AbstractDevice, symbol::Symbol)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref).
|
||||
Return an `Expr` or `QuoteNode` accessing the variable identified by [`symbol`].
|
||||
"""
|
||||
function gen_access_expr end
|
22
src/devices/measure.jl
Normal file
22
src/devices/measure.jl
Normal file
@ -0,0 +1,22 @@
|
||||
"""
|
||||
measure_devices(machine::Machine; verbose::Bool)
|
||||
|
||||
Measure FLOPS, RAM, cache sizes and what other properties can be extracted for the devices in the given machine.
|
||||
"""
|
||||
function measure_devices!(machine::Machine; verbose::Bool = Base.is_interactive())
|
||||
for device in machine.devices
|
||||
measure_device!(device; verbose = verbose)
|
||||
end
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
measure_transfer_rates(machine::Machine; verbose::Bool)
|
||||
|
||||
Measure the transfer rates between devices in the machine.
|
||||
"""
|
||||
function measure_transfer_rates!(machine::Machine; verbose::Bool = Base.is_interactive())
|
||||
# TODO implement
|
||||
return nothing
|
||||
end
|
96
src/devices/numa/impl.jl
Normal file
96
src/devices/numa/impl.jl
Normal file
@ -0,0 +1,96 @@
|
||||
using NumaAllocators
|
||||
|
||||
"""
|
||||
NumaNode <: AbstractCPU
|
||||
|
||||
Representation of a specific CPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
|
||||
"""
|
||||
mutable struct NumaNode <: AbstractCPU
|
||||
numaId::UInt16
|
||||
threads::UInt16
|
||||
cacheStrategy::CacheStrategy
|
||||
FLOPS::Float64
|
||||
id::UUID
|
||||
end
|
||||
|
||||
push!(DEVICE_TYPES, NumaNode)
|
||||
|
||||
CACHE_STRATEGIES[NumaNode] = [LocalVariables()]
|
||||
|
||||
default_strategy(::Type{T}) where {T <: NumaNode} = LocalVariables()
|
||||
|
||||
function measure_device!(device::NumaNode; verbose::Bool)
|
||||
if verbose
|
||||
println("Measuring Numa Node $(device.numaId)")
|
||||
end
|
||||
|
||||
# TODO implement
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
get_devices(deviceType::Type{T}; verbose::Bool) where {T <: NumaNode}
|
||||
|
||||
Return a Vector of [`NumaNode`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
|
||||
"""
|
||||
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: NumaNode}
|
||||
devices = Vector{AbstractDevice}()
|
||||
noNumaNodes = highest_numa_node()
|
||||
|
||||
if (verbose)
|
||||
println("Found $(noNumaNodes + 1) NUMA nodes")
|
||||
end
|
||||
for i in 0:noNumaNodes
|
||||
push!(devices, NumaNode(i, 1, default_strategy(NumaNode), -1, UUIDs.uuid1(rng[1])))
|
||||
end
|
||||
|
||||
return devices
|
||||
end
|
||||
|
||||
"""
|
||||
gen_cache_init_code(device::NumaNode)
|
||||
|
||||
Generate code for initializing the [`LocalVariables`](@ref) strategy on a [`NumaNode`](@ref).
|
||||
"""
|
||||
function gen_cache_init_code(device::NumaNode)
|
||||
if typeof(device.cacheStrategy) <: LocalVariables
|
||||
# don't need to initialize anything
|
||||
return Expr(:block)
|
||||
elseif typeof(device.cacheStrategy) <: Dictionary
|
||||
return Meta.parse("cache_$(to_var_name(device.id)) = Dict{Symbol, Any}()")
|
||||
# TODO: sizehint?
|
||||
end
|
||||
|
||||
return error("Unimplemented cache strategy \"$(device.cacheStrategy)\" for device \"$(device)\"")
|
||||
end
|
||||
|
||||
"""
|
||||
gen_access_expr(device::NumaNode, symbol::Symbol)
|
||||
|
||||
Generate code to access the variable designated by `symbol` on a [`NumaNode`](@ref), using the [`CacheStrategy`](@ref) set in the device.
|
||||
"""
|
||||
function gen_access_expr(device::NumaNode, symbol::Symbol)
|
||||
return _gen_access_expr(device, device.cacheStrategy, symbol)
|
||||
end
|
||||
|
||||
"""
|
||||
_gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol)
|
||||
|
||||
Internal function for dispatch, used in [`gen_access_expr`](@ref).
|
||||
"""
|
||||
function _gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol)
|
||||
s = Symbol("data_$symbol")
|
||||
quoteNode = Meta.parse(":($s)")
|
||||
return quoteNode
|
||||
end
|
||||
|
||||
"""
|
||||
_gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol)
|
||||
|
||||
Internal function for dispatch, used in [`gen_access_expr`](@ref).
|
||||
"""
|
||||
function _gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol)
|
||||
accessStr = ":(cache_$(to_var_name(device.id))[:$symbol])"
|
||||
quoteNode = Meta.parse(accessStr)
|
||||
return quoteNode
|
||||
end
|
53
src/devices/oneapi/impl.jl
Normal file
53
src/devices/oneapi/impl.jl
Normal file
@ -0,0 +1,53 @@
|
||||
using oneAPI
|
||||
|
||||
"""
|
||||
oneAPIGPU <: AbstractGPU
|
||||
|
||||
Representation of a specific Intel GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
|
||||
"""
|
||||
mutable struct oneAPIGPU <: AbstractGPU
|
||||
device::Any
|
||||
cacheStrategy::CacheStrategy
|
||||
FLOPS::Float64
|
||||
end
|
||||
|
||||
push!(DEVICE_TYPES, oneAPIGPU)
|
||||
|
||||
CACHE_STRATEGIES[oneAPIGPU] = [LocalVariables()]
|
||||
|
||||
default_strategy(::Type{T}) where {T <: oneAPIGPU} = LocalVariables()
|
||||
|
||||
function measure_device!(device::oneAPIGPU; verbose::Bool)
|
||||
if verbose
|
||||
println("Measuring oneAPI GPU $(device.device)")
|
||||
end
|
||||
|
||||
# TODO implement
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: oneAPIGPU}
|
||||
|
||||
Return a Vector of [`oneAPIGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
|
||||
"""
|
||||
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: oneAPIGPU}
|
||||
devices = Vector{AbstractDevice}()
|
||||
|
||||
if !oneAPI.functional()
|
||||
if verbose
|
||||
println("oneAPI is non-functional")
|
||||
end
|
||||
return devices
|
||||
end
|
||||
|
||||
oneAPIDevices = oneAPI.devices()
|
||||
if verbose
|
||||
println("Found $(length(oneAPIDevices)) oneAPI devices")
|
||||
end
|
||||
for device in oneAPIDevices
|
||||
push!(devices, oneAPIGPU(device, default_strategy(oneAPIGPU), -1))
|
||||
end
|
||||
|
||||
return devices
|
||||
end
|
53
src/devices/rocm/impl.jl
Normal file
53
src/devices/rocm/impl.jl
Normal file
@ -0,0 +1,53 @@
|
||||
using AMDGPU
|
||||
|
||||
"""
|
||||
ROCmGPU <: AbstractGPU
|
||||
|
||||
Representation of a specific AMD GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface.
|
||||
"""
|
||||
mutable struct ROCmGPU <: AbstractGPU
|
||||
device::Any
|
||||
cacheStrategy::CacheStrategy
|
||||
FLOPS::Float64
|
||||
end
|
||||
|
||||
push!(DEVICE_TYPES, ROCmGPU)
|
||||
|
||||
CACHE_STRATEGIES[ROCmGPU] = [LocalVariables()]
|
||||
|
||||
default_strategy(::Type{T}) where {T <: ROCmGPU} = LocalVariables()
|
||||
|
||||
function measure_device!(device::ROCmGPU; verbose::Bool)
|
||||
if verbose
|
||||
println("Measuring ROCm GPU $(device.device)")
|
||||
end
|
||||
|
||||
# TODO implement
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: ROCmGPU}
|
||||
|
||||
Return a Vector of [`ROCmGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information.
|
||||
"""
|
||||
function get_devices(deviceType::Type{T}; verbose::Bool = false) where {T <: ROCmGPU}
|
||||
devices = Vector{AbstractDevice}()
|
||||
|
||||
if !AMDGPU.functional()
|
||||
if verbose
|
||||
println("AMDGPU is non-functional")
|
||||
end
|
||||
return devices
|
||||
end
|
||||
|
||||
AMDDevices = AMDGPU.devices()
|
||||
if verbose
|
||||
println("Found $(length(AMDDevices)) AMD devices")
|
||||
end
|
||||
for device in AMDDevices
|
||||
push!(devices, ROCmGPU(device, default_strategy(ROCmGPU), -1))
|
||||
end
|
||||
|
||||
return devices
|
||||
end
|
@ -6,6 +6,6 @@ Pretty-print a [`Diff`](@ref). Called via print, println and co.
|
||||
function show(io::IO, diff::Diff)
|
||||
print(io, "Nodes: ")
|
||||
print(io, length(diff.addedNodes) + length(diff.removedNodes))
|
||||
print(io, " Edges: ")
|
||||
print(io, ", Edges: ")
|
||||
return print(io, length(diff.addedEdges) + length(diff.removedEdges))
|
||||
end
|
||||
|
@ -4,8 +4,8 @@
|
||||
A named tuple representing a difference of added and removed nodes and edges on a [`DAG`](@ref).
|
||||
"""
|
||||
const Diff = NamedTuple{
|
||||
(:addedNodes, :removedNodes, :addedEdges, :removedEdges),
|
||||
Tuple{Vector{Node}, Vector{Node}, Vector{Edge}, Vector{Edge}},
|
||||
(:addedNodes, :removedNodes, :addedEdges, :removedEdges, :updatedChildren),
|
||||
Tuple{Vector{Node}, Vector{Node}, Vector{Edge}, Vector{Edge}, Vector{Tuple{Node, AbstractTask}}},
|
||||
}
|
||||
|
||||
function Diff()
|
||||
@ -14,5 +14,8 @@ function Diff()
|
||||
removedNodes = Vector{Node}(),
|
||||
addedEdges = Vector{Edge}(),
|
||||
removedEdges = Vector{Edge}(),
|
||||
|
||||
# children were updated in the task, updatedChildren[x][2] is the task before the update
|
||||
updatedChildren = Vector{Tuple{Node, AbstractTask}}(),
|
||||
)::Diff
|
||||
end
|
||||
|
@ -38,8 +38,7 @@ end
|
||||
|
||||
Return `true` if [`pop_operation!`](@ref) is possible, `false` otherwise.
|
||||
"""
|
||||
can_pop(graph::DAG) =
|
||||
!isempty(graph.operationsToApply) || !isempty(graph.appliedOperations)
|
||||
can_pop(graph::DAG) = !isempty(graph.operationsToApply) || !isempty(graph.appliedOperations)
|
||||
|
||||
"""
|
||||
reset_graph!(graph::DAG)
|
||||
|
@ -15,12 +15,7 @@ Insert the node into the graph.
|
||||
|
||||
See also: [`remove_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
|
||||
"""
|
||||
function insert_node!(
|
||||
graph::DAG,
|
||||
node::Node,
|
||||
track = true,
|
||||
invalidate_cache = true,
|
||||
)
|
||||
function insert_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
|
||||
# 1: mute
|
||||
push!(graph.nodes, node)
|
||||
|
||||
@ -50,14 +45,8 @@ Insert the edge between node1 (child) and node2 (parent) into the graph.
|
||||
|
||||
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`remove_edge!`](@ref)
|
||||
"""
|
||||
function insert_edge!(
|
||||
graph::DAG,
|
||||
node1::Node,
|
||||
node2::Node,
|
||||
track = true,
|
||||
invalidate_cache = true,
|
||||
)
|
||||
# @assert (node2 ∉ node1.parents) && (node1 ∉ node2.children) "Edge to insert already exists"
|
||||
function insert_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
|
||||
@assert (node2 ∉ node1.parents) && (node1 ∉ node2.children) "Edge to insert already exists"
|
||||
|
||||
# 1: mute
|
||||
# edge points from child to parent
|
||||
@ -95,13 +84,8 @@ Remove the node from the graph.
|
||||
|
||||
See also: [`insert_node!`](@ref), [`insert_edge!`](@ref), [`remove_edge!`](@ref)
|
||||
"""
|
||||
function remove_node!(
|
||||
graph::DAG,
|
||||
node::Node,
|
||||
track = true,
|
||||
invalidate_cache = true,
|
||||
)
|
||||
# @assert node in graph.nodes "Trying to remove a node that's not in the graph"
|
||||
function remove_node!(graph::DAG, node::Node; track = true, invalidate_cache = true)
|
||||
@assert node in graph.nodes "Trying to remove a node that's not in the graph"
|
||||
|
||||
# 1: mute
|
||||
delete!(graph.nodes, node)
|
||||
@ -134,13 +118,7 @@ Remove the edge between node1 (child) and node2 (parent) into the graph.
|
||||
|
||||
See also: [`insert_node!`](@ref), [`remove_node!`](@ref), [`insert_edge!`](@ref)
|
||||
"""
|
||||
function remove_edge!(
|
||||
graph::DAG,
|
||||
node1::Node,
|
||||
node2::Node,
|
||||
track = true,
|
||||
invalidate_cache = true,
|
||||
)
|
||||
function remove_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true)
|
||||
# 1: mute
|
||||
pre_length1 = length(node1.parents)
|
||||
pre_length2 = length(node2.children)
|
||||
@ -149,15 +127,15 @@ function remove_edge!(
|
||||
filter!(x -> x != node2, node1.parents)
|
||||
filter!(x -> x != node1, node2.children)
|
||||
|
||||
#=@assert begin
|
||||
removed = pre_length1 - length(node1.parents)
|
||||
removed <= 1
|
||||
end "removed more than one node from node1's parents"=#
|
||||
@assert begin
|
||||
removed = pre_length1 - length(node1.parents)
|
||||
removed <= 1
|
||||
end "removed more than one node from node1's parents"
|
||||
|
||||
#=@assert begin
|
||||
removed = pre_length2 - length(node2.children)
|
||||
removed <= 1
|
||||
end "removed more than one node from node2's children"=#
|
||||
@assert begin
|
||||
removed = pre_length2 - length(node2.children)
|
||||
removed <= 1
|
||||
end "removed more than one node from node2's children"
|
||||
|
||||
# 2: keep track
|
||||
if (track)
|
||||
@ -181,6 +159,66 @@ function remove_edge!(
|
||||
return nothing
|
||||
end
|
||||
|
||||
function replace_children!(task::FusedComputeTask, before, after)
|
||||
replacedIn1 = length(findall(x -> x == before, task.t1_inputs))
|
||||
replacedIn2 = length(findall(x -> x == before, task.t2_inputs))
|
||||
|
||||
@assert replacedIn1 >= 1 || replacedIn2 >= 1 "Nothing to replace while replacing $before with $after in $(task.t1_inputs...) and $(task.t2_inputs...)"
|
||||
|
||||
replace!(task.t1_inputs, before => after)
|
||||
replace!(task.t2_inputs, before => after)
|
||||
|
||||
# recursively descend down the tree, but only in the tasks where we're replacing things
|
||||
if replacedIn1 > 0
|
||||
replace_children!(task.first_task, before, after)
|
||||
end
|
||||
if replacedIn2 > 0
|
||||
replace_children!(task.second_task, before, after)
|
||||
end
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
function replace_children!(task::AbstractTask, before, after)
|
||||
return nothing
|
||||
end
|
||||
|
||||
function update_child!(graph::DAG, n::Node, child_before::Symbol, child_after::Symbol; track = true)
|
||||
# only need to update fused compute tasks
|
||||
if !(typeof(n.task) <: FusedComputeTask)
|
||||
return nothing
|
||||
end
|
||||
|
||||
taskBefore = copy(n.task)
|
||||
|
||||
if !((child_before in n.task.t1_inputs) || (child_before in n.task.t2_inputs))
|
||||
println("------------------ Nothing to replace!! ------------------")
|
||||
child_ids = Vector{String}()
|
||||
for child in n.children
|
||||
push!(child_ids, "$(child.id)")
|
||||
end
|
||||
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
|
||||
@assert false
|
||||
end
|
||||
|
||||
replace_children!(n.task, child_before, child_after)
|
||||
|
||||
if !((child_after in n.task.t1_inputs) || (child_after in n.task.t2_inputs))
|
||||
println("------------------ Did not replace anything!! ------------------")
|
||||
child_ids = Vector{String}()
|
||||
for child in n.children
|
||||
push!(child_ids, "$(child.id)")
|
||||
end
|
||||
println("From $(child_before) to $(child_after) in $n with children $(child_ids)")
|
||||
@assert false
|
||||
end
|
||||
|
||||
# keep track
|
||||
if (track)
|
||||
push!(graph.diff.updatedChildren, (n, taskBefore))
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
get_snapshot_diff(graph::DAG)
|
||||
|
||||
|
@ -62,9 +62,5 @@ function show(io::IO, graph::DAG)
|
||||
properties = get_properties(graph)
|
||||
println(io, " Total Compute Effort: ", properties.computeEffort)
|
||||
println(io, " Total Data Transfer: ", properties.data)
|
||||
return println(
|
||||
io,
|
||||
" Total Compute Intensity: ",
|
||||
properties.computeIntensity,
|
||||
)
|
||||
return println(io, " Total Compute Intensity: ", properties.computeIntensity)
|
||||
end
|
||||
|
@ -34,6 +34,7 @@ end
|
||||
Return a vector of the graph's entry nodes.
|
||||
"""
|
||||
function get_entry_nodes(graph::DAG)
|
||||
apply_all!(graph)
|
||||
result = Vector{Node}()
|
||||
for node in graph.nodes
|
||||
if (is_entry_node(node))
|
||||
|
@ -17,7 +17,7 @@ end
|
||||
|
||||
The representation of the graph as a set of [`Node`](@ref)s.
|
||||
|
||||
A DAG can be loaded using the appropriate parse function, e.g. [`parse_abc`](@ref).
|
||||
A DAG can be loaded using the appropriate parse_dag function, e.g. [`parse_dag`](@ref).
|
||||
|
||||
[`Operation`](@ref)s can be applied on it using [`push_operation!`](@ref) and reverted using [`pop_operation!`](@ref) like a stack.
|
||||
To get the set of possible operations, use [`get_operations`](@ref).
|
||||
@ -52,11 +52,7 @@ end
|
||||
Construct and return an empty [`PossibleOperations`](@ref) object.
|
||||
"""
|
||||
function PossibleOperations()
|
||||
return PossibleOperations(
|
||||
Set{NodeFusion}(),
|
||||
Set{NodeReduction}(),
|
||||
Set{NodeSplit}(),
|
||||
)
|
||||
return PossibleOperations(Set{NodeFusion}(), Set{NodeReduction}(), Set{NodeSplit}())
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -59,3 +59,19 @@ function is_valid(graph::DAG)
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
"""
|
||||
is_scheduled(graph::DAG)
|
||||
|
||||
Validate that the entire graph has been scheduled, i.e., every [`ComputeTaskNode`](@ref) has its `.device` set.
|
||||
"""
|
||||
function is_scheduled(graph::DAG)
|
||||
for node in graph.nodes
|
||||
if (node isa DataTaskNode)
|
||||
continue
|
||||
end
|
||||
@assert !ismissing(node.device)
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
@ -45,6 +45,12 @@ For valid inputs, both input particles should have the same momenta at this poin
|
||||
12 FLOP.
|
||||
"""
|
||||
function compute(::ComputeTaskS2, data1::ParticleValue, data2::ParticleValue)
|
||||
#=
|
||||
@assert isapprox(abs(data1.p.momentum.E), abs(data2.p.momentum.E), rtol = 0.001, atol = sqrt(eps())) "E: $(data1.p.momentum.E) vs. $(data2.p.momentum.E)"
|
||||
@assert isapprox(data1.p.momentum.px, -data2.p.momentum.px, rtol = 0.001, atol = sqrt(eps())) "px: $(data1.p.momentum.px) vs. $(data2.p.momentum.px)"
|
||||
@assert isapprox(data1.p.momentum.py, -data2.p.momentum.py, rtol = 0.001, atol = sqrt(eps())) "py: $(data1.p.momentum.py) vs. $(data2.p.momentum.py)"
|
||||
@assert isapprox(data1.p.momentum.pz, -data2.p.momentum.pz, rtol = 0.001, atol = sqrt(eps())) "pz: $(data1.p.momentum.pz) vs. $(data2.p.momentum.pz)"
|
||||
=#
|
||||
return data1.v * inner_edge(data1.p) * data2.v
|
||||
end
|
||||
|
||||
@ -71,186 +77,78 @@ function compute(::ComputeTaskSum, data::Vector{Float64})
|
||||
end
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask, data)
|
||||
get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
|
||||
Generate and return code evaluating [`ComputeTaskP`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
"""
|
||||
function compute(t::FusedComputeTask, data)
|
||||
@assert false "This is not implemented and should never be called"
|
||||
function get_expression(::ComputeTaskP, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskP(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskP, inSymbol::Symbol, outSymbol::Symbol)
|
||||
get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate and return code evaluating [`ComputeTaskP`](@ref) on `inSymbol`, providing the output on `outSymbol`.
|
||||
Generate code evaluating [`ComputeTaskU`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskP, inSymbol::Symbol, outSymbol::Symbol)
|
||||
return Meta.parse("$outSymbol = compute(ComputeTaskP(), $inSymbol)")
|
||||
function get_expression(::ComputeTaskU, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskU(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskU, inSymbol::Symbol, outSymbol::Symbol)
|
||||
get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskU`](@ref) on `inSymbol`, providing the output on `outSymbol`.
|
||||
`inSymbol` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
|
||||
Generate code evaluating [`ComputeTaskV`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSym[1]` and `inSym[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(::ComputeTaskU, inSymbol::Symbol, outSymbol::Symbol)
|
||||
return Meta.parse("$outSymbol = compute(ComputeTaskU(), $inSymbol)")
|
||||
function get_expression(::ComputeTaskV, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskV(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskV, inSymbol1::Symbol, inSymbol2::Symbol, outSymbol::Symbol)
|
||||
get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskV`](@ref) on `inSymbol1` and `inSymbol2`, providing the output on `outSymbol`.
|
||||
`inSymbol1` and `inSymbol2` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
|
||||
Generate code evaluating [`ComputeTaskS2`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms[1]` and `inSyms[2]` should be of type [`ParticleValue`](@ref), `outSym` will be of type `Float64`.
|
||||
"""
|
||||
function get_expression(
|
||||
::ComputeTaskV,
|
||||
inSymbol1::Symbol,
|
||||
inSymbol2::Symbol,
|
||||
outSymbol::Symbol,
|
||||
)
|
||||
return Meta.parse(
|
||||
"$outSymbol = compute(ComputeTaskV(), $inSymbol1, $inSymbol2)",
|
||||
)
|
||||
function get_expression(::ComputeTaskS2, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1]), eval(inExprs[2])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskS2(), $(in[1]), $(in[2]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskS2, inSymbol1::Symbol, inSymbol2::Symbol, outSymbol::Symbol)
|
||||
get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskS2`](@ref) on `inSymbol1` and `inSymbol2`, providing the output on `outSymbol`.
|
||||
`inSymbol1` and `inSymbol2` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type `Float64`.
|
||||
Generate code evaluating [`ComputeTaskS1`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`ParticleValue`](@ref), `outSym` will be of type [`ParticleValue`](@ref).
|
||||
"""
|
||||
function get_expression(
|
||||
::ComputeTaskS2,
|
||||
inSymbol1::Symbol,
|
||||
inSymbol2::Symbol,
|
||||
outSymbol::Symbol,
|
||||
)
|
||||
return Meta.parse(
|
||||
"$outSymbol = compute(ComputeTaskS2(), $inSymbol1, $inSymbol2)",
|
||||
)
|
||||
function get_expression(::ComputeTaskS1, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = [eval(inExprs[1])]
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskS1(), $(in[1]))")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskS1, inSymbol::Symbol, outSymbol::Symbol)
|
||||
get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector{Expr}, outExpr::Expr)
|
||||
|
||||
Generate code evaluating [`ComputeTaskS1`](@ref) on `inSymbol`, providing the output on `outSymbol`.
|
||||
`inSymbol` should be of type [`ParticleValue`](@ref), `outSymbol` will be of type [`ParticleValue`](@ref).
|
||||
Generate code evaluating [`ComputeTaskSum`](@ref) on `inSyms`, providing the output on `outSym`.
|
||||
`inSyms` should be of type [`Float64`], `outSym` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(::ComputeTaskS1, inSymbol::Symbol, outSymbol::Symbol)
|
||||
return Meta.parse("$outSymbol = compute(ComputeTaskS1(), $inSymbol)")
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(::ComputeTaskSum, inSymbols::Vector{Symbol}, outSymbol::Symbol)
|
||||
|
||||
Generate code evaluating [`ComputeTaskSum`](@ref) on `inSymbols`, providing the output on `outSymbol`.
|
||||
`inSymbols` should be of type [`Float64`], `outSymbol` will be of type [`Float64`].
|
||||
"""
|
||||
function get_expression(
|
||||
::ComputeTaskSum,
|
||||
inSymbols::Vector{Symbol},
|
||||
outSymbol::Symbol,
|
||||
)
|
||||
return quote
|
||||
$outSymbol = compute(ComputeTaskSum(), [$(inSymbols...)])
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(t::FusedComputeTask, inSymbols::Vector{Symbol}, outSymbol::Symbol)
|
||||
|
||||
Generate code evaluating a [`FusedComputeTask`](@ref) on `inSymbols`, providing the output on `outSymbol`.
|
||||
`inSymbols` should be of the correct types and may be heterogeneous. `outSymbol` will be of the type of the output of `T2` of t.
|
||||
"""
|
||||
function get_expression(
|
||||
t::FusedComputeTask,
|
||||
inSymbols::Vector{Symbol},
|
||||
outSymbol::Symbol,
|
||||
)
|
||||
(T1, T2) = get_types(t)
|
||||
c1 = children(T1())
|
||||
c2 = children(T2())
|
||||
|
||||
expr1 = nothing
|
||||
expr2 = nothing
|
||||
|
||||
# TODO need to figure out how to know which inputs belong to which subtask
|
||||
# since we order the vectors with the child nodes we can't just split
|
||||
if (c1 == 1)
|
||||
expr1 = get_expression(T1(), inSymbols[begin], :intermediate)
|
||||
elseif (c1 == 2)
|
||||
expr1 =
|
||||
get_expression(T1(), inSymbols[begin], inSymbols[2], :intermediate)
|
||||
else
|
||||
expr1 = get_expression(T1(), inSymbols[begin:c1], :intermediate)
|
||||
end
|
||||
|
||||
if (c2 == 1)
|
||||
expr2 = get_expression(T2(), :intermediate, outSymbol)
|
||||
elseif c2 == 2
|
||||
expr2 =
|
||||
get_expression(T2(), :intermediate, inSymbols[c1 + 1], outSymbol)
|
||||
else
|
||||
expr2 = get_expression(
|
||||
T2(),
|
||||
:intermediate * inSymbols[(c1 + 1):end],
|
||||
outSymbol,
|
||||
)
|
||||
end
|
||||
|
||||
return Expr(:block, expr1, expr2)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::ComputeTaskNode)
|
||||
|
||||
Generate and return code for a given [`ComputeTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::ComputeTaskNode)
|
||||
t = typeof(node.task)
|
||||
@assert length(node.children) == children(node.task) || t <: ComputeTaskSum
|
||||
|
||||
if (t <: ComputeTaskU || t <: ComputeTaskP || t <: ComputeTaskS1) # single input
|
||||
symbolIn = Symbol("data_$(to_var_name(node.children[1].id))")
|
||||
symbolOut = Symbol("data_$(to_var_name(node.id))")
|
||||
return get_expression(t(), symbolIn, symbolOut)
|
||||
elseif (t <: ComputeTaskS2 || t <: ComputeTaskV) # double input
|
||||
symbolIn1 = Symbol("data_$(to_var_name(node.children[1].id))")
|
||||
symbolIn2 = Symbol("data_$(to_var_name(node.children[2].id))")
|
||||
symbolOut = Symbol("data_$(to_var_name(node.id))")
|
||||
return get_expression(t(), symbolIn1, symbolIn2, symbolOut)
|
||||
elseif (t <: ComputeTaskSum || t <: FusedComputeTask) # vector input
|
||||
inSymbols = Vector{Symbol}()
|
||||
for child in node.children
|
||||
push!(inSymbols, Symbol("data_$(to_var_name(child.id))"))
|
||||
end
|
||||
outSymbol = Symbol("data_$(to_var_name(node.id))")
|
||||
return get_expression(t(), inSymbols, outSymbol)
|
||||
else
|
||||
error("Unknown compute task")
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::DataTaskNode)
|
||||
|
||||
Generate and return code for a given [`DataTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::DataTaskNode)
|
||||
# TODO: do things to transport data from/to gpu, between numa nodes, etc.
|
||||
@assert length(node.children) <= 1
|
||||
|
||||
inSymbol = nothing
|
||||
if (length(node.children) == 1)
|
||||
inSymbol = Symbol("data_$(to_var_name(node.children[1].id))")
|
||||
else
|
||||
inSymbol = Symbol("data_$(to_var_name(node.id))_in")
|
||||
end
|
||||
outSymbol = Symbol("data_$(to_var_name(node.id))")
|
||||
|
||||
dataTransportExp = Meta.parse("$outSymbol = $inSymbol")
|
||||
|
||||
return dataTransportExp
|
||||
function get_expression(::ComputeTaskSum, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
in = eval.(inExprs)
|
||||
out = eval(outExpr)
|
||||
|
||||
return Meta.parse("$out = compute(ComputeTaskSum(), [$(unroll_symbol_vector(in))])")
|
||||
end
|
||||
|
@ -1,74 +1,198 @@
|
||||
using QEDbase
|
||||
using Random
|
||||
using Roots
|
||||
using ForwardDiff
|
||||
|
||||
ComputeTaskSum() = ComputeTaskSum(0)
|
||||
|
||||
"""
|
||||
Particle(rng)
|
||||
gen_process_input(processDescription::ABCProcessDescription)
|
||||
|
||||
Return a randomly generated particle.
|
||||
Return a ProcessInput of randomly generated [`ABCParticle`](@ref)s from a [`ABCProcessDescription`](@ref). The process description can be created manually or parsed from a string using [`parse_process`](@ref).
|
||||
|
||||
Note: This uses RAMBO to create a valid process with conservation of momentum and energy.
|
||||
"""
|
||||
function Particle(rng, type::ParticleType)
|
||||
function gen_process_input(processDescription::ABCProcessDescription)
|
||||
inParticleTypes = keys(processDescription.inParticles)
|
||||
outParticleTypes = keys(processDescription.outParticles)
|
||||
|
||||
p1 = rand(rng, Float64)
|
||||
p2 = rand(rng, Float64)
|
||||
p3 = rand(rng, Float64)
|
||||
m = mass(type)
|
||||
|
||||
# keep the momenta of the particles on-shell
|
||||
p4 = sqrt(p1^2 + p2^2 + p3^2 + m^2)
|
||||
|
||||
return Particle(p1, p2, p3, p4, type)
|
||||
end
|
||||
|
||||
"""
|
||||
gen_particles(n::Int)
|
||||
|
||||
Return a Vector of `n` randomly generated [`Particle`](@ref)s.
|
||||
|
||||
Note: This does not take into account the preservation of momenta required for an actual valid process!
|
||||
"""
|
||||
function gen_particles(ns::Dict{ParticleType, Int})
|
||||
particles = Dict{ParticleType, Vector{Particle}}()
|
||||
rng = MersenneTwister(0)
|
||||
|
||||
|
||||
if ns == Dict((A => 2), (B => 2))
|
||||
rho = 1.0
|
||||
|
||||
omega = rand(rng, Float64)
|
||||
theta = rand(rng, Float64) * π
|
||||
phi = rand(rng, Float64) * π
|
||||
|
||||
particles[A] = Vector{Particle}()
|
||||
particles[B] = Vector{Particle}()
|
||||
|
||||
push!(particles[A], Particle(omega, 0, 0, omega, A))
|
||||
push!(particles[B], Particle(omega, 0, 0, -omega, B))
|
||||
push!(
|
||||
particles[A],
|
||||
Particle(
|
||||
omega,
|
||||
rho * cos(theta) * cos(phi),
|
||||
rho * cos(theta) * sin(phi),
|
||||
rho * sin(theta),
|
||||
A,
|
||||
),
|
||||
)
|
||||
push!(
|
||||
particles[B],
|
||||
Particle(
|
||||
omega,
|
||||
-rho * cos(theta) * cos(phi),
|
||||
-rho * cos(theta) * sin(phi),
|
||||
-rho * sin(theta),
|
||||
B,
|
||||
),
|
||||
)
|
||||
return particles
|
||||
end
|
||||
|
||||
for (type, n) in ns
|
||||
particles[type] = Vector{Particle}()
|
||||
for i in 1:n
|
||||
push!(particles[type], Particle(rng, type))
|
||||
massSum = 0
|
||||
inputMasses = Vector{Float64}()
|
||||
for (particle, n) in processDescription.inParticles
|
||||
for _ in 1:n
|
||||
massSum += mass(particle)
|
||||
push!(inputMasses, mass(particle))
|
||||
end
|
||||
end
|
||||
return particles
|
||||
outputMasses = Vector{Float64}()
|
||||
for (particle, n) in processDescription.outParticles
|
||||
for _ in 1:n
|
||||
massSum += mass(particle)
|
||||
push!(outputMasses, mass(particle))
|
||||
end
|
||||
end
|
||||
|
||||
# add some extra random mass to allow for some momentum
|
||||
massSum += rand(rng[threadid()]) * (length(inputMasses) + length(outputMasses))
|
||||
|
||||
|
||||
inputParticles = Vector{ABCParticle}()
|
||||
initialMomenta = generate_initial_moms(massSum, inputMasses)
|
||||
index = 1
|
||||
for (particle, n) in processDescription.inParticles
|
||||
for _ in 1:n
|
||||
mom = initialMomenta[index]
|
||||
push!(inputParticles, particle(mom))
|
||||
index += 1
|
||||
end
|
||||
end
|
||||
|
||||
outputParticles = Vector{ABCParticle}()
|
||||
final_momenta = generate_physical_massive_moms(rng[threadid()], massSum, outputMasses)
|
||||
index = 1
|
||||
for (particle, n) in processDescription.outParticles
|
||||
for _ in 1:n
|
||||
mom = final_momenta[index]
|
||||
push!(outputParticles, particle(SFourMomentum(-mom.E, mom.px, mom.py, mom.pz)))
|
||||
index += 1
|
||||
end
|
||||
end
|
||||
|
||||
processInput = ABCProcessInput(processDescription, inputParticles, outputParticles)
|
||||
|
||||
return return processInput
|
||||
end
|
||||
|
||||
####################
|
||||
# CODE FROM HERE BORROWED FROM SOURCE: https://codebase.helmholtz.cloud/qedsandbox/QEDphasespaces.jl/
|
||||
# use qedphasespaces directly once released
|
||||
#
|
||||
# quick and dirty implementation of the RAMBO algorithm
|
||||
#
|
||||
# reference:
|
||||
# * https://cds.cern.ch/record/164736/files/198601282.pdf
|
||||
# * https://www.sciencedirect.com/science/article/pii/0010465586901190
|
||||
####################
|
||||
|
||||
function generate_initial_moms(ss, masses)
|
||||
E1 = (ss^2 + masses[1]^2 - masses[2]^2) / (2 * ss)
|
||||
E2 = (ss^2 + masses[2]^2 - masses[1]^2) / (2 * ss)
|
||||
|
||||
rho1 = sqrt(E1^2 - masses[1]^2)
|
||||
rho2 = sqrt(E2^2 - masses[2]^2)
|
||||
|
||||
return [SFourMomentum(E1, 0, 0, rho1), SFourMomentum(E2, 0, 0, -rho2)]
|
||||
end
|
||||
|
||||
|
||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SFourMomentum}) = SFourMomentum(rand(rng, 4))
|
||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{NTuple{N, Float64}}) where {N} = Tuple(rand(rng, N))
|
||||
|
||||
|
||||
function _transform_uni_to_mom(u1, u2, u3, u4)
|
||||
cth = 2 * u1 - 1
|
||||
sth = sqrt(1 - cth^2)
|
||||
phi = 2 * pi * u2
|
||||
q0 = -log(u3 * u4)
|
||||
qx = q0 * sth * cos(phi)
|
||||
qy = q0 * sth * sin(phi)
|
||||
qz = q0 * cth
|
||||
|
||||
return SFourMomentum(q0, qx, qy, qz)
|
||||
end
|
||||
|
||||
function _transform_uni_to_mom!(uni_mom, dest)
|
||||
u1, u2, u3, u4 = Tuple(uni_mom)
|
||||
cth = 2 * u1 - 1
|
||||
sth = sqrt(1 - cth^2)
|
||||
phi = 2 * pi * u2
|
||||
q0 = -log(u3 * u4)
|
||||
qx = q0 * sth * cos(phi)
|
||||
qy = q0 * sth * sin(phi)
|
||||
qz = q0 * cth
|
||||
|
||||
return dest = SFourMomentum(q0, qx, qy, qz)
|
||||
end
|
||||
|
||||
_transform_uni_to_mom(u1234::Tuple) = _transform_uni_to_mom(u1234...)
|
||||
_transform_uni_to_mom(u1234::SFourMomentum) = _transform_uni_to_mom(Tuple(u1234))
|
||||
|
||||
function generate_massless_moms(rng, n::Int)
|
||||
a = Vector{SFourMomentum}(undef, n)
|
||||
rand!(rng, a)
|
||||
return map(_transform_uni_to_mom, a)
|
||||
end
|
||||
|
||||
function generate_physical_massless_moms(rng, ss, n)
|
||||
r_moms = generate_massless_moms(rng, n)
|
||||
Q = sum(r_moms)
|
||||
M = sqrt(Q * Q)
|
||||
fac = -1 / M
|
||||
Qx = getX(Q)
|
||||
Qy = getY(Q)
|
||||
Qz = getZ(Q)
|
||||
bx = fac * Qx
|
||||
by = fac * Qy
|
||||
bz = fac * Qz
|
||||
gamma = getT(Q) / M
|
||||
a = 1 / (1 + gamma)
|
||||
x = ss / M
|
||||
|
||||
i = 1
|
||||
while i <= n
|
||||
mom = r_moms[i]
|
||||
mom0 = getT(mom)
|
||||
mom1 = getX(mom)
|
||||
mom2 = getY(mom)
|
||||
mom3 = getZ(mom)
|
||||
|
||||
bq = bx * mom1 + by * mom2 + bz * mom3
|
||||
|
||||
p0 = x * (gamma * mom0 + bq)
|
||||
px = x * (mom1 + bx * mom0 + a * bq * bx)
|
||||
py = x * (mom2 + by * mom0 + a * bq * by)
|
||||
pz = x * (mom3 + bz * mom0 + a * bq * bz)
|
||||
|
||||
r_moms[i] = SFourMomentum(p0, px, py, pz)
|
||||
i += 1
|
||||
end
|
||||
return r_moms
|
||||
end
|
||||
|
||||
function _to_be_solved(xi, masses, p0s, ss)
|
||||
sum = 0.0
|
||||
for (i, E) in enumerate(p0s)
|
||||
sum += sqrt(masses[i]^2 + xi^2 * E^2)
|
||||
end
|
||||
return sum - ss
|
||||
end
|
||||
|
||||
function _build_massive_momenta(xi, masses, massless_moms)
|
||||
vec = SFourMomentum[]
|
||||
i = 1
|
||||
while i <= length(massless_moms)
|
||||
massless_mom = massless_moms[i]
|
||||
k0 = sqrt(getT(massless_mom)^2 * xi^2 + masses[i]^2)
|
||||
|
||||
kx = xi * getX(massless_mom)
|
||||
ky = xi * getY(massless_mom)
|
||||
kz = xi * getZ(massless_mom)
|
||||
|
||||
push!(vec, SFourMomentum(k0, kx, ky, kz))
|
||||
|
||||
i += 1
|
||||
end
|
||||
return vec
|
||||
end
|
||||
|
||||
first_derivative(func) = x -> ForwardDiff.derivative(func, float(x))
|
||||
|
||||
|
||||
function generate_physical_massive_moms(rng, ss, masses; x0 = 0.1)
|
||||
n = length(masses)
|
||||
massless_moms = generate_physical_massless_moms(rng, ss, n)
|
||||
energies = getT.(massless_moms)
|
||||
f = x -> _to_be_solved(x, masses, energies, ss)
|
||||
xi = find_zero((f, first_derivative(f)), x0, Roots.Newton())
|
||||
return _build_massive_momenta(xi, masses, massless_moms)
|
||||
end
|
||||
|
@ -32,13 +32,13 @@ function parse_edges(input::AbstractString)
|
||||
end
|
||||
|
||||
"""
|
||||
parse_abc(filename::String; verbose::Bool = false)
|
||||
parse_dag(filename::String, model::ABCModel; verbose::Bool = false)
|
||||
|
||||
Read an abc-model process from the given file. If `verbose` is set to true, print some progress information to stdout.
|
||||
|
||||
Returns a valid [`DAG`](@ref).
|
||||
"""
|
||||
function parse_abc(filename::String, verbose::Bool = false)
|
||||
function parse_dag(filename::AbstractString, model::ABCModel, verbose::Bool = false)
|
||||
file = open(filename, "r")
|
||||
|
||||
if (verbose)
|
||||
@ -63,10 +63,9 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
end
|
||||
sizehint!(graph.nodes, estimate_no_nodes)
|
||||
|
||||
sum_node = insert_node!(graph, make_node(ComputeTaskSum()), false, false)
|
||||
global_data_out =
|
||||
insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), false, false)
|
||||
insert_edge!(graph, sum_node, global_data_out, false, false)
|
||||
sum_node = insert_node!(graph, make_node(ComputeTaskSum(0)), track = false, invalidate_cache = false)
|
||||
global_data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, sum_node, global_data_out, track = false, invalidate_cache = false)
|
||||
|
||||
# remember the data out nodes for connection
|
||||
dataOutNodes = Dict()
|
||||
@ -81,10 +80,7 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
noNodes += 1
|
||||
if (noNodes % 100 == 0)
|
||||
if (verbose)
|
||||
percent = string(
|
||||
round(100.0 * noNodes / nodesToRead, digits = 2),
|
||||
"%",
|
||||
)
|
||||
percent = string(round(100.0 * noNodes / nodesToRead, digits = 2), "%")
|
||||
print("\rReading Nodes... $percent")
|
||||
end
|
||||
end
|
||||
@ -93,30 +89,20 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
data_in = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE), string(node)),
|
||||
false,
|
||||
false,
|
||||
track = false,
|
||||
invalidate_cache = false,
|
||||
) # read particle data node
|
||||
compute_P =
|
||||
insert_node!(graph, make_node(ComputeTaskP()), false, false) # compute P node
|
||||
data_Pu = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
) # transfer data from P to u (one ParticleValue object)
|
||||
compute_u =
|
||||
insert_node!(graph, make_node(ComputeTaskU()), false, false) # compute U node
|
||||
data_out = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
) # transfer data out from u (one ParticleValue object)
|
||||
compute_P = insert_node!(graph, make_node(ComputeTaskP()), track = false, invalidate_cache = false) # compute P node
|
||||
data_Pu =
|
||||
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data from P to u (one ParticleValue object)
|
||||
compute_u = insert_node!(graph, make_node(ComputeTaskU()), track = false, invalidate_cache = false) # compute U node
|
||||
data_out =
|
||||
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false) # transfer data out from u (one ParticleValue object)
|
||||
|
||||
insert_edge!(graph, data_in, compute_P, false, false)
|
||||
insert_edge!(graph, compute_P, data_Pu, false, false)
|
||||
insert_edge!(graph, data_Pu, compute_u, false, false)
|
||||
insert_edge!(graph, compute_u, data_out, false, false)
|
||||
insert_edge!(graph, data_in, compute_P, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_P, data_Pu, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, data_Pu, compute_u, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_u, data_out, track = false, invalidate_cache = false)
|
||||
|
||||
# remember the data_out node for future edges
|
||||
dataOutNodes[node] = data_out
|
||||
@ -126,63 +112,48 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
in1 = capt.captures[1]
|
||||
in2 = capt.captures[2]
|
||||
|
||||
compute_v =
|
||||
insert_node!(graph, make_node(ComputeTaskV()), false, false)
|
||||
data_out = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
)
|
||||
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
|
||||
data_out =
|
||||
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
|
||||
|
||||
if (occursin(regex_c, in1))
|
||||
# put an S node after this input
|
||||
compute_S = insert_node!(
|
||||
graph,
|
||||
make_node(ComputeTaskS1()),
|
||||
false,
|
||||
false,
|
||||
)
|
||||
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
|
||||
data_S_v = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
track = false,
|
||||
invalidate_cache = false,
|
||||
)
|
||||
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_S, false, false)
|
||||
insert_edge!(graph, compute_S, data_S_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_S, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_S, data_S_v, track = false, invalidate_cache = false)
|
||||
|
||||
insert_edge!(graph, data_S_v, compute_v, false, false)
|
||||
insert_edge!(graph, data_S_v, compute_v, track = false, invalidate_cache = false)
|
||||
else
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_v, track = false, invalidate_cache = false)
|
||||
end
|
||||
|
||||
if (occursin(regex_c, in2))
|
||||
# i think the current generator only puts the combined particles in the first space, so this case might never be entered
|
||||
# put an S node after this input
|
||||
compute_S = insert_node!(
|
||||
graph,
|
||||
make_node(ComputeTaskS1()),
|
||||
false,
|
||||
false,
|
||||
)
|
||||
compute_S = insert_node!(graph, make_node(ComputeTaskS1()), track = false, invalidate_cache = false)
|
||||
data_S_v = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
track = false,
|
||||
invalidate_cache = false,
|
||||
)
|
||||
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_S, false, false)
|
||||
insert_edge!(graph, compute_S, data_S_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_S, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_S, data_S_v, track = false, invalidate_cache = false)
|
||||
|
||||
insert_edge!(graph, data_S_v, compute_v, false, false)
|
||||
insert_edge!(graph, data_S_v, compute_v, track = false, invalidate_cache = false)
|
||||
else
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_v, track = false, invalidate_cache = false)
|
||||
end
|
||||
|
||||
insert_edge!(graph, compute_v, data_out, false, false)
|
||||
insert_edge!(graph, compute_v, data_out, track = false, invalidate_cache = false)
|
||||
dataOutNodes[node] = data_out
|
||||
|
||||
elseif occursin(regex_m, node)
|
||||
@ -193,43 +164,31 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
in3 = capt.captures[3]
|
||||
|
||||
# in2 + in3 with a v
|
||||
compute_v =
|
||||
insert_node!(graph, make_node(ComputeTaskV()), false, false)
|
||||
data_v = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(PARTICLE_VALUE_SIZE)),
|
||||
false,
|
||||
false,
|
||||
)
|
||||
compute_v = insert_node!(graph, make_node(ComputeTaskV()), track = false, invalidate_cache = false)
|
||||
data_v =
|
||||
insert_node!(graph, make_node(DataTask(PARTICLE_VALUE_SIZE)), track = false, invalidate_cache = false)
|
||||
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in3], compute_v, false, false)
|
||||
insert_edge!(graph, compute_v, data_v, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in2], compute_v, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, dataOutNodes[in3], compute_v, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_v, data_v, track = false, invalidate_cache = false)
|
||||
|
||||
# combine with the v of the combined other input
|
||||
compute_S2 =
|
||||
insert_node!(graph, make_node(ComputeTaskS2()), false, false)
|
||||
data_out = insert_node!(
|
||||
graph,
|
||||
make_node(DataTask(FLOAT_SIZE)),
|
||||
false,
|
||||
false,
|
||||
) # output of a S2 task is only a float
|
||||
compute_S2 = insert_node!(graph, make_node(ComputeTaskS2()), track = false, invalidate_cache = false)
|
||||
data_out = insert_node!(graph, make_node(DataTask(FLOAT_SIZE)), track = false, invalidate_cache = false) # output of a S2 task is only a float
|
||||
|
||||
insert_edge!(graph, data_v, compute_S2, false, false)
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_S2, false, false)
|
||||
insert_edge!(graph, compute_S2, data_out, false, false)
|
||||
insert_edge!(graph, data_v, compute_S2, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, dataOutNodes[in1], compute_S2, track = false, invalidate_cache = false)
|
||||
insert_edge!(graph, compute_S2, data_out, track = false, invalidate_cache = false)
|
||||
|
||||
insert_edge!(graph, data_out, sum_node, false, false)
|
||||
insert_edge!(graph, data_out, sum_node, track = false, invalidate_cache = false)
|
||||
add_child!(sum_node.task)
|
||||
elseif occursin(regex_plus, node)
|
||||
if (verbose)
|
||||
println("\rReading Nodes Complete ")
|
||||
println("Added ", length(graph.nodes), " nodes")
|
||||
end
|
||||
else
|
||||
@assert false (
|
||||
"Unknown node '$node' while reading from file $filename"
|
||||
)
|
||||
@assert false ("Unknown node '$node' while reading from file $filename")
|
||||
end
|
||||
end
|
||||
|
||||
@ -244,6 +203,46 @@ function parse_abc(filename::String, verbose::Bool = false)
|
||||
if (verbose)
|
||||
println("Done")
|
||||
end
|
||||
|
||||
# don't actually need to read the edges
|
||||
return graph
|
||||
end
|
||||
|
||||
"""
|
||||
parse_process(string::AbstractString, model::ABCModel)
|
||||
|
||||
Parse a string representation of a process, such as "AB->ABBB" into the corresponding [`ABCProcessDescription`](@ref).
|
||||
"""
|
||||
function parse_process(str::AbstractString, model::ABCModel)
|
||||
inParticles = Dict{Type, Int}()
|
||||
outParticles = Dict{Type, Int}()
|
||||
|
||||
if !(contains(str, "->"))
|
||||
throw("Did not find -> while parsing process \"$str\"")
|
||||
end
|
||||
|
||||
(inStr, outStr) = split(str, "->")
|
||||
|
||||
if (isempty(inStr) || isempty(outStr))
|
||||
throw("Process (\"$str\") input or output part is empty!")
|
||||
end
|
||||
|
||||
for t in types(model)
|
||||
inCount = count(x -> x == String(t)[1], inStr)
|
||||
outCount = count(x -> x == String(t)[1], outStr)
|
||||
if inCount != 0
|
||||
inParticles[t] = inCount
|
||||
end
|
||||
if outCount != 0
|
||||
outParticles[t] = outCount
|
||||
end
|
||||
end
|
||||
|
||||
if length(inStr) != sum(values(inParticles))
|
||||
throw("Encountered unknown characters in the input part of process \"$str\"")
|
||||
elseif length(outStr) != sum(values(outParticles))
|
||||
throw("Encountered unknown characters in the output part of process \"$str\"")
|
||||
end
|
||||
|
||||
return ABCProcessDescription(inParticles, outParticles)
|
||||
end
|
||||
|
@ -1,99 +1,140 @@
|
||||
"""
|
||||
ParticleType
|
||||
using QEDbase
|
||||
|
||||
A Particle Type in the ABC Model as an enum, with types `A`, `B` and `C`.
|
||||
"""
|
||||
@enum ParticleType A = 1 B = 2 C = 3
|
||||
ABCModel <: AbstractPhysicsModel
|
||||
|
||||
Singleton definition for identification of the ABC-Model.
|
||||
"""
|
||||
struct ABCModel <: AbstractPhysicsModel end
|
||||
|
||||
"""
|
||||
ABCParticle
|
||||
|
||||
Base type for all particles in the [`ABCModel`](@ref).
|
||||
"""
|
||||
abstract type ABCParticle <: AbstractParticle end
|
||||
|
||||
"""
|
||||
ParticleA <: ABCParticle
|
||||
|
||||
An 'A' particle in the ABC Model.
|
||||
"""
|
||||
struct ParticleA <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ParticleB <: ABCParticle
|
||||
|
||||
A 'B' particle in the ABC Model.
|
||||
"""
|
||||
struct ParticleB <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ParticleC <: ABCParticle
|
||||
|
||||
A 'C' particle in the ABC Model.
|
||||
"""
|
||||
struct ParticleC <: ABCParticle
|
||||
momentum::SFourMomentum
|
||||
end
|
||||
|
||||
"""
|
||||
ABCProcessDescription <: AbstractProcessDescription
|
||||
|
||||
A description of a process in the ABC-Model. Contains the input and output particles.
|
||||
|
||||
See also: [`in_particles`](@ref), [`out_particles`](@ref), [`parse_process`](@ref)
|
||||
"""
|
||||
struct ABCProcessDescription <: AbstractProcessDescription
|
||||
inParticles::Dict{Type, Int}
|
||||
outParticles::Dict{Type, Int}
|
||||
end
|
||||
|
||||
"""
|
||||
ABCProcessInput <: AbstractProcessInput
|
||||
|
||||
Input for a ABC Process. Contains the [`ABCProcessDescription`](@ref) of the process it is an input for, and the values of the in and out particles.
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
struct ABCProcessInput <: AbstractProcessInput
|
||||
process::ABCProcessDescription
|
||||
inParticles::Vector{ABCParticle}
|
||||
outParticles::Vector{ABCParticle}
|
||||
end
|
||||
|
||||
"""
|
||||
PARTICLE_MASSES
|
||||
|
||||
A constant dictionary containing the masses of the different [`ParticleType`](@ref)s.
|
||||
A constant dictionary containing the masses of the different [`ABCParticle`](@ref)s.
|
||||
"""
|
||||
const PARTICLE_MASSES =
|
||||
Dict{ParticleType, Float64}(A => 1.0, B => 1.0, C => 0.0)
|
||||
const PARTICLE_MASSES = Dict{Type, Float64}(ParticleA => 1.0, ParticleB => 1.0, ParticleC => 0.0)
|
||||
|
||||
"""
|
||||
Particle
|
||||
|
||||
A struct describing a particle of the ABC-Model. It has the 4 momentum parts P0...P3 and a [`ParticleType`](@ref).
|
||||
|
||||
`sizeof(Particle())` = 40 Byte
|
||||
"""
|
||||
struct Particle
|
||||
P0::Float64
|
||||
P1::Float64
|
||||
P2::Float64
|
||||
P3::Float64
|
||||
|
||||
type::ParticleType
|
||||
end
|
||||
|
||||
"""
|
||||
ParticleValue
|
||||
|
||||
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated.
|
||||
|
||||
`sizeof(ParticleValue())` = 48 Byte
|
||||
"""
|
||||
struct ParticleValue
|
||||
p::Particle
|
||||
v::Float64
|
||||
end
|
||||
|
||||
"""
|
||||
mass(t::ParticleType)
|
||||
mass(t::Type{T}) where {T <: ABCParticle}
|
||||
|
||||
Return the mass (at rest) of the given particle type.
|
||||
"""
|
||||
mass(t::ParticleType) = PARTICLE_MASSES[t]
|
||||
mass(t::Type{T}) where {T <: ABCParticle} = PARTICLE_MASSES[t]
|
||||
|
||||
"""
|
||||
remaining_type(t1::ParticleType, t2::ParticleType)
|
||||
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
|
||||
|
||||
For 2 given (non-equal) particle types, return the third of ABC.
|
||||
"""
|
||||
function remaining_type(t1::ParticleType, t2::ParticleType)
|
||||
function interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: ABCParticle, T2 <: ABCParticle}
|
||||
@assert t1 != t2
|
||||
if t1 != A && t2 != A
|
||||
return A
|
||||
elseif t1 != B && t2 != B
|
||||
return B
|
||||
if t1 != Type{ParticleA} && t2 != Type{ParticleA}
|
||||
return ParticleA
|
||||
elseif t1 != Type{ParticleB} && t2 != Type{ParticleB}
|
||||
return ParticleB
|
||||
else
|
||||
return C
|
||||
return ParticleC
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
square(p::Particle)
|
||||
types(::ABCModel)
|
||||
|
||||
Return a Vector of the possible types of particle in the [`ABCModel`](@ref).
|
||||
"""
|
||||
function types(::ABCModel)
|
||||
return [ParticleA, ParticleB, ParticleC]
|
||||
end
|
||||
|
||||
"""
|
||||
square(p::ABCParticle)
|
||||
|
||||
Return the square of the particle's momentum as a `Float` value.
|
||||
|
||||
Takes 7 effective FLOP.
|
||||
"""
|
||||
function square(p::Particle)
|
||||
return p.P0 * p.P0 - p.P1 * p.P1 - p.P2 * p.P2 - p.P3 * p.P3
|
||||
function square(p::ABCParticle)
|
||||
return getMass2(p.momentum)
|
||||
end
|
||||
|
||||
"""
|
||||
inner_edge(p::Particle)
|
||||
inner_edge(p::ABCParticle)
|
||||
|
||||
Return the factor of the inner edge with the given (virtual) particle.
|
||||
|
||||
Takes 10 effective FLOP. (3 here + 10 in square(p))
|
||||
Takes 10 effective FLOP. (3 here + 7 in square(p))
|
||||
"""
|
||||
function inner_edge(p::Particle)
|
||||
return 1.0 / (square(p) - mass(p.type) * mass(p.type))
|
||||
function inner_edge(p::ABCParticle)
|
||||
return 1.0 / (square(p) - mass(typeof(p)) * mass(typeof(p)))
|
||||
end
|
||||
|
||||
"""
|
||||
outer_edge(p::Particle)
|
||||
outer_edge(p::ABCParticle)
|
||||
|
||||
Return the factor of the outer edge with the given (real) particle.
|
||||
|
||||
Takes 0 effective FLOP.
|
||||
"""
|
||||
function outer_edge(p::Particle)
|
||||
function outer_edge(p::ABCParticle)
|
||||
return 1.0
|
||||
end
|
||||
|
||||
@ -111,20 +152,58 @@ function vertex()
|
||||
end
|
||||
|
||||
"""
|
||||
preserve_momentum(p1::Particle, p2::Particle)
|
||||
preserve_momentum(p1::ABCParticle, p2::ABCParticle)
|
||||
|
||||
Calculate and return a new particle from two given interacting ones at a vertex.
|
||||
|
||||
Takes 4 effective FLOP.
|
||||
"""
|
||||
function preserve_momentum(p1::Particle, p2::Particle)
|
||||
p3 = Particle(
|
||||
p1.P0 + p2.P0,
|
||||
p1.P1 + p2.P1,
|
||||
p1.P2 + p2.P2,
|
||||
p1.P3 + p2.P3,
|
||||
remaining_type(p1.type, p2.type),
|
||||
)
|
||||
function preserve_momentum(p1::ABCParticle, p2::ABCParticle)
|
||||
t3 = interaction_result(typeof(p1), typeof(p2))
|
||||
p3 = t3(p1.momentum + p2.momentum)
|
||||
|
||||
return p3
|
||||
end
|
||||
|
||||
"""
|
||||
type_from_name(name::String)
|
||||
|
||||
For a name of a particle, return the particle's [`Type`].
|
||||
"""
|
||||
function type_from_name(name::String)
|
||||
if startswith(name, "A")
|
||||
return ParticleA
|
||||
elseif startswith(name, "B")
|
||||
return ParticleB
|
||||
elseif startswith(name, "C")
|
||||
return ParticleC
|
||||
else
|
||||
throw("Invalid name for a particle in the ABC model")
|
||||
end
|
||||
end
|
||||
|
||||
function String(::Type{ParticleA})
|
||||
return "A"
|
||||
end
|
||||
function String(::Type{ParticleB})
|
||||
return "B"
|
||||
end
|
||||
function String(::Type{ParticleC})
|
||||
return "C"
|
||||
end
|
||||
|
||||
function in_particles(process::ABCProcessDescription)
|
||||
return process.inParticles
|
||||
end
|
||||
|
||||
function in_particles(input::ABCProcessInput)
|
||||
return input.inParticles
|
||||
end
|
||||
|
||||
function out_particles(process::ABCProcessDescription)
|
||||
return process.outParticles
|
||||
end
|
||||
|
||||
function out_particles(input::ABCProcessInput)
|
||||
return input.outParticles
|
||||
end
|
||||
|
58
src/models/abc/print.jl
Normal file
58
src/models/abc/print.jl
Normal file
@ -0,0 +1,58 @@
|
||||
|
||||
"""
|
||||
show(io::IO, process::ABCProcessDescription)
|
||||
|
||||
Pretty print an [`ABCProcessDescription`](@ref) (no newlines).
|
||||
|
||||
```jldoctest
|
||||
julia> using MetagraphOptimization
|
||||
|
||||
julia> print(parse_process("AB->ABBB", ABCModel()))
|
||||
ABC Process: 'AB->ABBB'
|
||||
```
|
||||
"""
|
||||
function show(io::IO, process::ABCProcessDescription)
|
||||
# types() gives the types in order (ABC) instead of random like keys() would
|
||||
print(io, "ABC Process: \'")
|
||||
for type in types(ABCModel())
|
||||
for _ in 1:get(process.inParticles, type, 0)
|
||||
print(io, String(type))
|
||||
end
|
||||
end
|
||||
print(io, "->")
|
||||
for type in types(ABCModel())
|
||||
for _ in 1:get(process.outParticles, type, 0)
|
||||
print(io, String(type))
|
||||
end
|
||||
end
|
||||
print(io, "'")
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, processInput::ABCProcessInput)
|
||||
|
||||
Pretty print an [`ABCProcessInput`](@ref) (with newlines).
|
||||
"""
|
||||
function show(io::IO, processInput::ABCProcessInput)
|
||||
println(io, "Input for $(processInput.process):")
|
||||
println(io, " $(length(processInput.inParticles)) Incoming particles:")
|
||||
for particle in processInput.inParticles
|
||||
println(io, " $particle")
|
||||
end
|
||||
println(io, " $(length(processInput.outParticles)) Outgoing Particles:")
|
||||
for particle in processInput.outParticles
|
||||
println(io, " $particle")
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
|
||||
"""
|
||||
show(io::IO, particle::T) where {T <: ABCParticle}
|
||||
|
||||
Pretty print an [`ABCParticle`](@ref) (no newlines).
|
||||
"""
|
||||
function show(io::IO, particle::T) where {T <: ABCParticle}
|
||||
print(io, "$(String(typeof(particle))): $(particle.momentum)")
|
||||
return nothing
|
||||
end
|
@ -57,42 +57,42 @@ end
|
||||
|
||||
Print the S1 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskS1) = print("ComputeS1")
|
||||
show(io::IO, t::ComputeTaskS1) = print(io, "ComputeS1")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskS2)
|
||||
|
||||
Print the S2 task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskS2) = print("ComputeS2")
|
||||
show(io::IO, t::ComputeTaskS2) = print(io, "ComputeS2")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskP)
|
||||
|
||||
Print the P task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskP) = print("ComputeP")
|
||||
show(io::IO, t::ComputeTaskP) = print(io, "ComputeP")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskU)
|
||||
|
||||
Print the U task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskU) = print("ComputeU")
|
||||
show(io::IO, t::ComputeTaskU) = print(io, "ComputeU")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskV)
|
||||
|
||||
Print the V task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskV) = print("ComputeV")
|
||||
show(io::IO, t::ComputeTaskV) = print(io, "ComputeV")
|
||||
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskSum)
|
||||
|
||||
Print the sum task to io.
|
||||
"""
|
||||
show(io::IO, t::ComputeTaskSum) = print("ComputeSum")
|
||||
show(io::IO, t::ComputeTaskSum) = print(io, "ComputeSum")
|
||||
|
||||
"""
|
||||
copy(t::DataTask)
|
||||
@ -147,19 +147,20 @@ children(::ComputeTaskV) = 2
|
||||
"""
|
||||
children(::ComputeTaskSum)
|
||||
|
||||
Return the number of children of a ComputeTaskSum, since this is variable and the task doesn't know
|
||||
how many children it will sum over, return a wildcard -1.
|
||||
|
||||
TODO: this is kind of bad because it means we can't fuse with a sum task
|
||||
Return the number of children of a ComputeTaskSum.
|
||||
"""
|
||||
children(::ComputeTaskSum) = -1
|
||||
children(t::ComputeTaskSum) = t.children_number
|
||||
|
||||
"""
|
||||
children(t::FusedComputeTask)
|
||||
|
||||
Return the number of children of a FusedComputeTask. It's the sum of the children of both tasks minus one.
|
||||
Return the number of children of a FusedComputeTask.
|
||||
"""
|
||||
function children(t::FusedComputeTask)
|
||||
(T1, T2) = get_types(t)
|
||||
return children(T1()) + children(T2()) - 1 # one of the inputs is the output of T1 and thus not a child of the node
|
||||
return length(union(Set(t.t1_inputs), Set(t.t2_inputs)))
|
||||
end
|
||||
|
||||
function add_child!(t::ComputeTaskSum)
|
||||
t.children_number += 1
|
||||
return nothing
|
||||
end
|
||||
|
@ -47,19 +47,13 @@ struct ComputeTaskU <: AbstractComputeTask end
|
||||
|
||||
Task that sums all its inputs, n children.
|
||||
"""
|
||||
struct ComputeTaskSum <: AbstractComputeTask end
|
||||
mutable struct ComputeTaskSum <: AbstractComputeTask
|
||||
children_number::Int
|
||||
end
|
||||
|
||||
"""
|
||||
ABC_TASKS
|
||||
|
||||
Constant vector of all tasks of the ABC-Model.
|
||||
"""
|
||||
ABC_TASKS = [
|
||||
DataTask,
|
||||
ComputeTaskS1,
|
||||
ComputeTaskS2,
|
||||
ComputeTaskP,
|
||||
ComputeTaskV,
|
||||
ComputeTaskU,
|
||||
ComputeTaskSum,
|
||||
]
|
||||
ABC_TASKS = [DataTask, ComputeTaskS1, ComputeTaskS2, ComputeTaskP, ComputeTaskV, ComputeTaskU, ComputeTaskSum]
|
||||
|
109
src/models/interface.jl
Normal file
109
src/models/interface.jl
Normal file
@ -0,0 +1,109 @@
|
||||
|
||||
"""
|
||||
AbstractPhysicsModel
|
||||
|
||||
Base type for a model, e.g. ABC-Model or QED. This is used to dispatch many functions.
|
||||
"""
|
||||
abstract type AbstractPhysicsModel end
|
||||
|
||||
"""
|
||||
AbstractParticle
|
||||
|
||||
Base type for particles belonging to a certain [`AbstractPhysicsModel`](@ref).
|
||||
"""
|
||||
abstract type AbstractParticle end
|
||||
|
||||
"""
|
||||
ParticleValue{ParticleType <: AbstractParticle}
|
||||
|
||||
A struct describing a particle during a calculation of a Feynman Diagram, together with the value that's being calculated.
|
||||
|
||||
`sizeof(ParticleValue())` = 48 Byte
|
||||
"""
|
||||
struct ParticleValue{ParticleType <: AbstractParticle}
|
||||
p::ParticleType
|
||||
v::Float64
|
||||
end
|
||||
|
||||
"""
|
||||
AbstractProcessDescription
|
||||
|
||||
Base type for process descriptions. An object of this type of a corresponding [`AbstractPhysicsModel`](@ref) should uniquely identify a process in that model.
|
||||
|
||||
See also: [`parse_process`](@ref)
|
||||
"""
|
||||
abstract type AbstractProcessDescription end
|
||||
|
||||
"""
|
||||
AbstractProcessInput
|
||||
|
||||
Base type for process inputs. An object of this type contains the input values (e.g. momenta) of the particles in a process.
|
||||
|
||||
See also: [`gen_process_input`](@ref)
|
||||
"""
|
||||
abstract type AbstractProcessInput end
|
||||
|
||||
"""
|
||||
mass(t::Type{T}) where {T <: AbstractParticle}
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractParticle`](@ref), returning the particles mass at rest.
|
||||
"""
|
||||
function mass end
|
||||
|
||||
"""
|
||||
interaction_result(t1::Type{T1}, t2::Type{T2}) where {T1 <: AbstractParticle, T2 <: AbstractParticle}
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractParticle`](@ref), returning the result particle type when the two given particles interact.
|
||||
"""
|
||||
function interaction_result end
|
||||
|
||||
"""
|
||||
types(::AbstractPhysicsModel)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractPhysicsModel`](@ref), returning a `Vector` of the available particle types in the model.
|
||||
"""
|
||||
function types end
|
||||
|
||||
"""
|
||||
in_particles(::AbstractProcessDescription)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractProcessDescription`](@ref).
|
||||
Returns a `<: Dict{Type{AbstractParticle}, Int}` object, representing the number of incoming particles for the process per particle type.
|
||||
|
||||
|
||||
in_particles(::AbstractProcessInput)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractProcessInput`](@ref).
|
||||
Returns a `<: Vector{AbstractParticle}` object with the values of all incoming particles for the corresponding `ProcessDescription`.
|
||||
"""
|
||||
function in_particles end
|
||||
|
||||
"""
|
||||
out_particles(::AbstractProcessDescription)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractProcessDescription`](@ref).
|
||||
Returns a `<: Dict{Type{AbstractParticle}, Int}` object, representing the number of outgoing particles for the process per particle type.
|
||||
|
||||
|
||||
out_particles(::AbstractProcessInput)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractProcessInput`](@ref).
|
||||
Returns a `<: Vector{AbstractParticle}` object with the values of all outgoing particles for the corresponding `ProcessDescription`.
|
||||
"""
|
||||
function out_particles end
|
||||
|
||||
"""
|
||||
parse_process(::AbstractString, ::AbstractPhysicsModel)
|
||||
|
||||
Interface function that must be implemented for every subtype of [`AbstractPhysicsModel`](@ref).
|
||||
Returns a `ProcessDescription` object.
|
||||
"""
|
||||
function parse_process end
|
||||
|
||||
"""
|
||||
gen_process_input(::AbstractProcessDescription)
|
||||
|
||||
Interface function that must be implemented for every specific [`AbstractProcessDescription`](@ref).
|
||||
Returns a randomly generated and valid corresponding `ProcessInput`.
|
||||
"""
|
||||
function gen_process_input end
|
10
src/models/print.jl
Normal file
10
src/models/print.jl
Normal file
@ -0,0 +1,10 @@
|
||||
|
||||
"""
|
||||
show(io::IO, particleValue::ParticleValue)
|
||||
|
||||
Pretty print a [`ParticleValue`](@ref), no newlines.
|
||||
"""
|
||||
function show(io::IO, particleValue::ParticleValue)
|
||||
print(io, "($(particleValue.p), value: $(particleValue.v))")
|
||||
return nothing
|
||||
end
|
@ -1,44 +1,20 @@
|
||||
|
||||
DataTaskNode(t::AbstractDataTask, name = "") = DataTaskNode(
|
||||
t,
|
||||
Vector{Node}(),
|
||||
Vector{Node}(),
|
||||
UUIDs.uuid1(rng[threadid()]),
|
||||
missing,
|
||||
missing,
|
||||
missing,
|
||||
name,
|
||||
)
|
||||
DataTaskNode(t::AbstractDataTask, name = "") =
|
||||
DataTaskNode(t, Vector{Node}(), Vector{Node}(), UUIDs.uuid1(rng[threadid()]), missing, missing, missing, name)
|
||||
ComputeTaskNode(t::AbstractComputeTask) = ComputeTaskNode(
|
||||
t,
|
||||
Vector{Node}(),
|
||||
Vector{Node}(),
|
||||
UUIDs.uuid1(rng[threadid()]),
|
||||
missing,
|
||||
missing,
|
||||
Vector{NodeFusion}(),
|
||||
t, # task
|
||||
Vector{Node}(), # parents
|
||||
Vector{Node}(), # children
|
||||
UUIDs.uuid1(rng[threadid()]), # id
|
||||
missing, # node reduction
|
||||
missing, # node split
|
||||
Vector{NodeFusion}(), # node fusions
|
||||
missing, # device
|
||||
)
|
||||
|
||||
copy(m::Missing) = missing
|
||||
copy(n::ComputeTaskNode) = ComputeTaskNode(
|
||||
copy(n.task),
|
||||
copy(n.parents),
|
||||
copy(n.children),
|
||||
UUIDs.uuid1(rng[threadid()]),
|
||||
copy(n.nodeReduction),
|
||||
copy(n.nodeSplit),
|
||||
copy(n.nodeFusions),
|
||||
)
|
||||
copy(n::DataTaskNode) = DataTaskNode(
|
||||
copy(n.task),
|
||||
copy(n.parents),
|
||||
copy(n.children),
|
||||
UUIDs.uuid1(rng[threadid()]),
|
||||
copy(n.nodeReduction),
|
||||
copy(n.nodeSplit),
|
||||
copy(n.nodeFusion),
|
||||
n.name,
|
||||
)
|
||||
copy(n::ComputeTaskNode) = ComputeTaskNode(copy(n.task))
|
||||
copy(n::DataTaskNode) = DataTaskNode(copy(n.task), n.name)
|
||||
|
||||
"""
|
||||
make_node(t::AbstractTask)
|
||||
|
@ -22,5 +22,6 @@ end
|
||||
Return the uuid as a string usable as a variable name in code generation.
|
||||
"""
|
||||
function to_var_name(id::UUID)
|
||||
return replace(string(id), "-" => "_")
|
||||
str = "_" * replace(string(id), "-" => "_")
|
||||
return str
|
||||
end
|
||||
|
@ -24,13 +24,14 @@ abstract type Operation end
|
||||
Any node that transfers data and does no computation.
|
||||
|
||||
# Fields
|
||||
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
|
||||
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
|
||||
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
|
||||
`.id`: The node's id. Improves the speed of comparisons.\\
|
||||
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.
|
||||
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
|
||||
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
|
||||
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
|
||||
`.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\
|
||||
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeFusion`: Either this node's [`NodeFusion`](@ref) or `missing`, if none. There can only be at most one for DataTaskNodes.\\
|
||||
`.name`: The name of this node for entry nodes into the graph ([`is_entry_node`](@ref)) to reliably assign the inputs to the correct nodes when executing.\\
|
||||
"""
|
||||
mutable struct DataTaskNode <: Node
|
||||
task::AbstractDataTask
|
||||
@ -60,16 +61,17 @@ end
|
||||
"""
|
||||
ComputeTaskNode <: Node
|
||||
|
||||
Any node that transfers data and does no computation.
|
||||
Any node that computes a result from inputs using an [`AbstractComputeTask`](@ref).
|
||||
|
||||
# Fields
|
||||
`.task`: The node's data task type. Usually [`DataTask`](@ref).\\
|
||||
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
|
||||
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
|
||||
`.id`: The node's id. Improves the speed of comparisons.\\
|
||||
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeFusion`: A vector of this node's [`NodeFusion`](@ref)s. For a ComputeTaskNode there can be any number of these, unlike the DataTaskNodes.
|
||||
`.task`: The node's compute task type. A concrete subtype of [`AbstractComputeTask`](@ref).\\
|
||||
`.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\
|
||||
`.children`: A vector of the node's children (i.e. nodes that this one depends on).\\
|
||||
`.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\
|
||||
`.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\
|
||||
`.nodeFusions`: A vector of this node's [`NodeFusion`](@ref)s. For a `ComputeTaskNode` there can be any number of these, unlike the [`DataTaskNode`](@ref)s.\\
|
||||
`.device`: The Device this node has been scheduled on by a [`Scheduler`](@ref).
|
||||
"""
|
||||
mutable struct ComputeTaskNode <: Node
|
||||
task::AbstractComputeTask
|
||||
@ -82,6 +84,9 @@ mutable struct ComputeTaskNode <: Node
|
||||
|
||||
# for ComputeTasks there can be multiple fusions, unlike the DataTasks
|
||||
nodeFusions::Vector{Operation}
|
||||
|
||||
# the device this node is assigned to execute on
|
||||
device::Union{AbstractDevice, Missing}
|
||||
end
|
||||
|
||||
"""
|
||||
@ -95,8 +100,5 @@ The child is the prerequisite node of the parent.
|
||||
"""
|
||||
struct Edge
|
||||
# edge points from child to parent
|
||||
edge::Union{
|
||||
Tuple{DataTaskNode, ComputeTaskNode},
|
||||
Tuple{ComputeTaskNode, DataTaskNode},
|
||||
}
|
||||
edge::Union{Tuple{DataTaskNode, ComputeTaskNode}, Tuple{ComputeTaskNode, DataTaskNode}}
|
||||
end
|
||||
|
@ -22,12 +22,24 @@ function is_valid_node(graph::DAG, node::Node)
|
||||
@assert node in child.parents "Node is not a parent of its child!"
|
||||
end
|
||||
|
||||
if !ismissing(node.nodeReduction)
|
||||
#=if !ismissing(node.nodeReduction)
|
||||
@assert is_valid(graph, node.nodeReduction)
|
||||
end
|
||||
if !ismissing(node.nodeSplit)
|
||||
@assert is_valid(graph, node.nodeSplit)
|
||||
end=#
|
||||
|
||||
if !(typeof(node.task) <: FusedComputeTask)
|
||||
# the remaining checks are only necessary for fused compute tasks
|
||||
return true
|
||||
end
|
||||
|
||||
# every child must be in some input of the task
|
||||
for child in node.children
|
||||
str = Symbol(to_var_name(child.id))
|
||||
@assert (str in node.task.t1_inputs) || (str in node.task.t2_inputs) "$str was not in any of the tasks' inputs\nt1_inputs: $(node.task.t1_inputs)\nt2_inputs: $(node.task.t2_inputs)"
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
@ -41,9 +53,9 @@ This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref).
|
||||
function is_valid(graph::DAG, node::ComputeTaskNode)
|
||||
@assert is_valid_node(graph, node)
|
||||
|
||||
for nf in node.nodeFusions
|
||||
#=for nf in node.nodeFusions
|
||||
@assert is_valid(graph, nf)
|
||||
end
|
||||
end=#
|
||||
return true
|
||||
end
|
||||
|
||||
@ -57,8 +69,8 @@ This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref).
|
||||
function is_valid(graph::DAG, node::DataTaskNode)
|
||||
@assert is_valid_node(graph, node)
|
||||
|
||||
if !ismissing(node.nodeFusion)
|
||||
#=if !ismissing(node.nodeFusion)
|
||||
@assert is_valid(graph, node.nodeFusion)
|
||||
end
|
||||
end=#
|
||||
return true
|
||||
end
|
||||
|
@ -34,12 +34,7 @@ Apply the given [`NodeFusion`](@ref) to the graph. Generic wrapper around [`node
|
||||
Return an [`AppliedNodeFusion`](@ref) object generated from the graph's [`Diff`](@ref).
|
||||
"""
|
||||
function apply_operation!(graph::DAG, operation::NodeFusion)
|
||||
diff = node_fusion!(
|
||||
graph,
|
||||
operation.input[1],
|
||||
operation.input[2],
|
||||
operation.input[3],
|
||||
)
|
||||
diff = node_fusion!(graph, operation.input[1], operation.input[2], operation.input[3])
|
||||
|
||||
graph.properties += GraphProperties(diff)
|
||||
|
||||
@ -124,17 +119,24 @@ function revert_diff!(graph::DAG, diff::Diff)
|
||||
# add removed nodes, remove added nodes, same for edges
|
||||
# note the order
|
||||
for edge in diff.addedEdges
|
||||
remove_edge!(graph, edge.edge[1], edge.edge[2], false)
|
||||
remove_edge!(graph, edge.edge[1], edge.edge[2], track = false)
|
||||
end
|
||||
for node in diff.addedNodes
|
||||
remove_node!(graph, node, false)
|
||||
remove_node!(graph, node, track = false)
|
||||
end
|
||||
|
||||
for node in diff.removedNodes
|
||||
insert_node!(graph, node, false)
|
||||
insert_node!(graph, node, track = false)
|
||||
end
|
||||
for edge in diff.removedEdges
|
||||
insert_edge!(graph, edge.edge[1], edge.edge[2], false)
|
||||
insert_edge!(graph, edge.edge[1], edge.edge[2], track = false)
|
||||
end
|
||||
|
||||
for (node, task) in diff.updatedChildren
|
||||
# node must be fused compute task at this point
|
||||
@assert typeof(node.task) <: FusedComputeTask
|
||||
|
||||
node.task = task
|
||||
end
|
||||
|
||||
graph.properties -= GraphProperties(diff)
|
||||
@ -149,21 +151,24 @@ Fuse nodes n1 -> n2 -> n3 together into one node, return the applied difference
|
||||
|
||||
For details see [`NodeFusion`](@ref).
|
||||
"""
|
||||
function node_fusion!(
|
||||
graph::DAG,
|
||||
n1::ComputeTaskNode,
|
||||
n2::DataTaskNode,
|
||||
n3::ComputeTaskNode,
|
||||
)
|
||||
# @assert is_valid_node_fusion_input(graph, n1, n2, n3)
|
||||
function node_fusion!(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
|
||||
@assert is_valid_node_fusion_input(graph, n1, n2, n3)
|
||||
|
||||
# clear snapshot
|
||||
get_snapshot_diff(graph)
|
||||
|
||||
# save children and parents
|
||||
n1_children = children(n1)
|
||||
n3_parents = parents(n3)
|
||||
n3_children = children(n3)
|
||||
n1Children = children(n1)
|
||||
n3Parents = parents(n3)
|
||||
|
||||
n1Task = copy(n1.task)
|
||||
n3Task = copy(n3.task)
|
||||
|
||||
# assemble the input node vectors of n1 and n3 to save into the FusedComputeTask
|
||||
n1Inputs = Vector{Symbol}()
|
||||
for child in n1Children
|
||||
push!(n1Inputs, Symbol(to_var_name(child.id)))
|
||||
end
|
||||
|
||||
# remove the edges and nodes that will be replaced by the fused node
|
||||
remove_edge!(graph, n1, n2)
|
||||
@ -172,29 +177,38 @@ function node_fusion!(
|
||||
remove_node!(graph, n2)
|
||||
|
||||
# get n3's children now so it automatically excludes n2
|
||||
n3_children = children(n3)
|
||||
n3Children = children(n3)
|
||||
|
||||
n3Inputs = Vector{Symbol}()
|
||||
for child in n3Children
|
||||
push!(n3Inputs, Symbol(to_var_name(child.id)))
|
||||
end
|
||||
|
||||
remove_node!(graph, n3)
|
||||
|
||||
# create new node with the fused compute task
|
||||
new_node =
|
||||
ComputeTaskNode(FusedComputeTask{typeof(n1.task), typeof(n3.task)}())
|
||||
insert_node!(graph, new_node)
|
||||
newNode = ComputeTaskNode(FusedComputeTask(n1Task, n3Task, n1Inputs, Symbol(to_var_name(n2.id)), n3Inputs))
|
||||
insert_node!(graph, newNode)
|
||||
|
||||
for child in n1_children
|
||||
for child in n1Children
|
||||
remove_edge!(graph, child, n1)
|
||||
insert_edge!(graph, child, new_node)
|
||||
insert_edge!(graph, child, newNode)
|
||||
end
|
||||
|
||||
for child in n3_children
|
||||
for child in n3Children
|
||||
remove_edge!(graph, child, n3)
|
||||
if !(child in n1_children)
|
||||
insert_edge!(graph, child, new_node)
|
||||
if !(child in n1Children)
|
||||
insert_edge!(graph, child, newNode)
|
||||
end
|
||||
end
|
||||
|
||||
for parent in n3_parents
|
||||
for parent in n3Parents
|
||||
remove_edge!(graph, n3, parent)
|
||||
insert_edge!(graph, new_node, parent)
|
||||
insert_edge!(graph, newNode, parent)
|
||||
|
||||
# important! update the parent node's child names in case they are fused compute tasks
|
||||
# needed for compute generation so the fused compute task can correctly match inputs to its component tasks
|
||||
update_child!(graph, parent, Symbol(to_var_name(n3.id)), Symbol(to_var_name(newNode.id)))
|
||||
end
|
||||
|
||||
return get_snapshot_diff(graph)
|
||||
@ -208,21 +222,26 @@ Reduce the given nodes together into one node, return the applied difference to
|
||||
For details see [`NodeReduction`](@ref).
|
||||
"""
|
||||
function node_reduction!(graph::DAG, nodes::Vector{Node})
|
||||
# @assert is_valid_node_reduction_input(graph, nodes)
|
||||
@assert is_valid_node_reduction_input(graph, nodes)
|
||||
|
||||
# clear snapshot
|
||||
get_snapshot_diff(graph)
|
||||
|
||||
n1 = nodes[1]
|
||||
n1_children = children(n1)
|
||||
n1Children = children(n1)
|
||||
|
||||
n1_parents = Set(n1.parents)
|
||||
new_parents = Set{Node}()
|
||||
n1Parents = Set(n1.parents)
|
||||
|
||||
# set of the new parents of n1
|
||||
newParents = Set{Node}()
|
||||
|
||||
# names of the previous children that n1 now replaces per parent
|
||||
newParentsChildNames = Dict{Node, Symbol}()
|
||||
|
||||
# remove all of the nodes' parents and children and the nodes themselves (except for first node)
|
||||
for i in 2:length(nodes)
|
||||
n = nodes[i]
|
||||
for child in n1_children
|
||||
for child in n1Children
|
||||
remove_edge!(graph, child, n)
|
||||
end
|
||||
|
||||
@ -230,17 +249,23 @@ function node_reduction!(graph::DAG, nodes::Vector{Node})
|
||||
remove_edge!(graph, n, parent)
|
||||
|
||||
# collect all parents
|
||||
push!(new_parents, parent)
|
||||
push!(newParents, parent)
|
||||
newParentsChildNames[parent] = Symbol(to_var_name(n.id))
|
||||
end
|
||||
|
||||
remove_node!(graph, n)
|
||||
end
|
||||
|
||||
setdiff!(new_parents, n1_parents)
|
||||
|
||||
for parent in new_parents
|
||||
for parent in newParents
|
||||
# now add parents of all input nodes to n1 without duplicates
|
||||
insert_edge!(graph, n1, parent)
|
||||
if !(parent in n1Parents)
|
||||
# don't double insert edges
|
||||
insert_edge!(graph, n1, parent)
|
||||
end
|
||||
|
||||
# this has to be done for all parents, even the ones of n1 because they can be duplicate
|
||||
prevChild = newParentsChildNames[parent]
|
||||
update_child!(graph, parent, prevChild, Symbol(to_var_name(n1.id)))
|
||||
end
|
||||
|
||||
return get_snapshot_diff(graph)
|
||||
@ -254,30 +279,33 @@ Split the given node into one node per parent, return the applied difference to
|
||||
For details see [`NodeSplit`](@ref).
|
||||
"""
|
||||
function node_split!(graph::DAG, n1::Node)
|
||||
# @assert is_valid_node_split_input(graph, n1)
|
||||
@assert is_valid_node_split_input(graph, n1)
|
||||
|
||||
# clear snapshot
|
||||
get_snapshot_diff(graph)
|
||||
|
||||
n1_parents = parents(n1)
|
||||
n1_children = children(n1)
|
||||
n1Parents = parents(n1)
|
||||
n1Children = children(n1)
|
||||
|
||||
for parent in n1_parents
|
||||
for parent in n1Parents
|
||||
remove_edge!(graph, n1, parent)
|
||||
end
|
||||
for child in n1_children
|
||||
for child in n1Children
|
||||
remove_edge!(graph, child, n1)
|
||||
end
|
||||
remove_node!(graph, n1)
|
||||
|
||||
for parent in n1_parents
|
||||
n_copy = copy(n1)
|
||||
insert_node!(graph, n_copy)
|
||||
insert_edge!(graph, n_copy, parent)
|
||||
for parent in n1Parents
|
||||
nCopy = copy(n1)
|
||||
|
||||
for child in n1_children
|
||||
insert_edge!(graph, child, n_copy)
|
||||
insert_node!(graph, nCopy)
|
||||
insert_edge!(graph, nCopy, parent)
|
||||
|
||||
for child in n1Children
|
||||
insert_edge!(graph, child, nCopy)
|
||||
end
|
||||
|
||||
update_child!(graph, parent, Symbol(to_var_name(n1.id)), Symbol(to_var_name(nCopy.id)))
|
||||
end
|
||||
|
||||
return get_snapshot_diff(graph)
|
||||
|
@ -7,10 +7,7 @@ using Base.Threads
|
||||
|
||||
Insert the given node fusion into its input nodes' operation caches. For the compute nodes, locking via the given `locks` is employed to have safe multi-threading. For a large set of nodes, contention on the locks should be very small.
|
||||
"""
|
||||
function insert_operation!(
|
||||
nf::NodeFusion,
|
||||
locks::Dict{ComputeTaskNode, SpinLock},
|
||||
)
|
||||
function insert_operation!(nf::NodeFusion, locks::Dict{ComputeTaskNode, SpinLock})
|
||||
n1 = nf.input[1]
|
||||
n2 = nf.input[2]
|
||||
n3 = nf.input[3]
|
||||
@ -52,10 +49,7 @@ end
|
||||
|
||||
Insert the node reductions into the graph and the nodes' caches. Employs multithreading for speedup.
|
||||
"""
|
||||
function nr_insertion!(
|
||||
operations::PossibleOperations,
|
||||
nodeReductions::Vector{Vector{NodeReduction}},
|
||||
)
|
||||
function nr_insertion!(operations::PossibleOperations, nodeReductions::Vector{Vector{NodeReduction}})
|
||||
total_len = 0
|
||||
for vec in nodeReductions
|
||||
total_len += length(vec)
|
||||
@ -83,11 +77,7 @@ end
|
||||
|
||||
Insert the node fusions into the graph and the nodes' caches. Employs multithreading for speedup.
|
||||
"""
|
||||
function nf_insertion!(
|
||||
graph::DAG,
|
||||
operations::PossibleOperations,
|
||||
nodeFusions::Vector{Vector{NodeFusion}},
|
||||
)
|
||||
function nf_insertion!(graph::DAG, operations::PossibleOperations, nodeFusions::Vector{Vector{NodeFusion}})
|
||||
total_len = 0
|
||||
for vec in nodeFusions
|
||||
total_len += length(vec)
|
||||
@ -122,10 +112,7 @@ end
|
||||
|
||||
Insert the node splits into the graph and the nodes' caches. Employs multithreading for speedup.
|
||||
"""
|
||||
function ns_insertion!(
|
||||
operations::PossibleOperations,
|
||||
nodeSplits::Vector{Vector{NodeSplit}},
|
||||
)
|
||||
function ns_insertion!(operations::PossibleOperations, nodeSplits::Vector{Vector{NodeSplit}})
|
||||
total_len = 0
|
||||
for vec in nodeSplits
|
||||
total_len += length(vec)
|
||||
@ -231,16 +218,12 @@ function generate_operations(graph::DAG)
|
||||
continue
|
||||
end
|
||||
|
||||
push!(
|
||||
generatedFusions[threadid()],
|
||||
NodeFusion((child_node, node, parent_node)),
|
||||
)
|
||||
push!(generatedFusions[threadid()], NodeFusion((child_node, node, parent_node)))
|
||||
end
|
||||
end
|
||||
|
||||
# launch thread for node fusion insertion
|
||||
nf_task =
|
||||
@task nf_insertion!(graph, graph.possibleOperations, generatedFusions)
|
||||
nf_task = @task nf_insertion!(graph, graph.possibleOperations, generatedFusions)
|
||||
schedule(nf_task)
|
||||
|
||||
# find possible node splits
|
||||
|
@ -4,9 +4,7 @@
|
||||
Return whether `operations` is empty, i.e. all of its fields are empty.
|
||||
"""
|
||||
function isempty(operations::PossibleOperations)
|
||||
return isempty(operations.nodeFusions) &&
|
||||
isempty(operations.nodeReductions) &&
|
||||
isempty(operations.nodeSplits)
|
||||
return isempty(operations.nodeFusions) && isempty(operations.nodeReductions) && isempty(operations.nodeSplits)
|
||||
end
|
||||
|
||||
"""
|
||||
@ -63,9 +61,7 @@ function can_fuse(n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
|
||||
return false
|
||||
end
|
||||
|
||||
if length(n2.parents) != 1 ||
|
||||
length(n2.children) != 1 ||
|
||||
length(n1.parents) != 1
|
||||
if length(n2.parents) != 1 || length(n2.children) != 1 || length(n1.parents) != 1
|
||||
return false
|
||||
end
|
||||
|
||||
|
@ -9,24 +9,12 @@ Assert for a gven node fusion input whether the nodes can be fused. For the requ
|
||||
|
||||
Intended for use with `@assert` or `@test`.
|
||||
"""
|
||||
function is_valid_node_fusion_input(
|
||||
graph::DAG,
|
||||
n1::ComputeTaskNode,
|
||||
n2::DataTaskNode,
|
||||
n3::ComputeTaskNode,
|
||||
)
|
||||
function is_valid_node_fusion_input(graph::DAG, n1::ComputeTaskNode, n2::DataTaskNode, n3::ComputeTaskNode)
|
||||
if !(n1 in graph) || !(n2 in graph) || !(n3 in graph)
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Fusion] The given nodes are not part of the given graph",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Fusion] The given nodes are not part of the given graph"))
|
||||
end
|
||||
|
||||
if !is_child(n1, n2) ||
|
||||
!is_child(n2, n3) ||
|
||||
!is_parent(n3, n2) ||
|
||||
!is_parent(n2, n1)
|
||||
if !is_child(n1, n2) || !is_child(n2, n3) || !is_parent(n3, n2) || !is_parent(n2, n1)
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Fusion] The given nodes are not connected by edges which is required for node fusion",
|
||||
@ -35,27 +23,19 @@ function is_valid_node_fusion_input(
|
||||
end
|
||||
|
||||
if length(n2.parents) > 1
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Fusion] The given data node has more than one parent",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Fusion] The given data node has more than one parent"))
|
||||
end
|
||||
if length(n2.children) > 1
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Fusion] The given data node has more than one child",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Fusion] The given data node has more than one child"))
|
||||
end
|
||||
if length(n1.parents) > 1
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Fusion] The given n1 has more than one parent",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Fusion] The given n1 has more than one parent"))
|
||||
end
|
||||
|
||||
@assert is_valid(graph, n1)
|
||||
@assert is_valid(graph, n2)
|
||||
@assert is_valid(graph, n3)
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
@ -69,22 +49,21 @@ Intended for use with `@assert` or `@test`.
|
||||
function is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node})
|
||||
for n in nodes
|
||||
if n ∉ graph
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Reduction] The given nodes are not part of the given graph",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Reduction] The given nodes are not part of the given graph"))
|
||||
end
|
||||
@assert is_valid(graph, n)
|
||||
end
|
||||
|
||||
t = typeof(nodes[1].task)
|
||||
for n in nodes
|
||||
if typeof(n.task) != t
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Reduction] The given nodes are not of the same type",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Reduction] The given nodes are not of the same type"))
|
||||
end
|
||||
|
||||
if (typeof(n) <: DataTaskNode)
|
||||
if (n.name != nodes[1].name)
|
||||
throw(AssertionError("[Node Reduction] The given nodes do not have the same name"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@ -111,11 +90,7 @@ Intended for use with `@assert` or `@test`.
|
||||
"""
|
||||
function is_valid_node_split_input(graph::DAG, n1::Node)
|
||||
if n1 ∉ graph
|
||||
throw(
|
||||
AssertionError(
|
||||
"[Node Split] The given node is not part of the given graph",
|
||||
),
|
||||
)
|
||||
throw(AssertionError("[Node Split] The given node is not part of the given graph"))
|
||||
end
|
||||
|
||||
if length(n1.parents) <= 1
|
||||
@ -126,6 +101,8 @@ function is_valid_node_split_input(graph::DAG, n1::Node)
|
||||
)
|
||||
end
|
||||
|
||||
@assert is_valid(graph, n1)
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
@ -163,12 +140,7 @@ Assert for a given [`NodeFusion`](@ref) whether it is a valid operation in the g
|
||||
Intended for use with `@assert` or `@test`.
|
||||
"""
|
||||
function is_valid(graph::DAG, nf::NodeFusion)
|
||||
@assert is_valid_node_fusion_input(
|
||||
graph,
|
||||
nf.input[1],
|
||||
nf.input[2],
|
||||
nf.input[3],
|
||||
)
|
||||
@assert is_valid_node_fusion_input(graph, nf.input[1], nf.input[2], nf.input[3])
|
||||
@assert nf in graph.possibleOperations.nodeFusions "NodeFusion is not part of the graph's possible operations!"
|
||||
return true
|
||||
end
|
||||
|
@ -11,8 +11,7 @@ function -(prop1::GraphProperties, prop2::GraphProperties)
|
||||
computeIntensity = if (prop1.data - prop2.data == 0)
|
||||
0.0
|
||||
else
|
||||
(prop1.computeEffort - prop2.computeEffort) /
|
||||
(prop1.data - prop2.data)
|
||||
(prop1.computeEffort - prop2.computeEffort) / (prop1.data - prop2.data)
|
||||
end,
|
||||
cost = prop1.cost - prop2.cost,
|
||||
noNodes = prop1.noNodes - prop2.noNodes,
|
||||
@ -33,8 +32,7 @@ function +(prop1::GraphProperties, prop2::GraphProperties)
|
||||
computeIntensity = if (prop1.data + prop2.data == 0)
|
||||
0.0
|
||||
else
|
||||
(prop1.computeEffort + prop2.computeEffort) /
|
||||
(prop1.data + prop2.data)
|
||||
(prop1.computeEffort + prop2.computeEffort) / (prop1.data + prop2.data)
|
||||
end,
|
||||
cost = prop1.cost + prop2.cost,
|
||||
noNodes = prop1.noNodes + prop2.noNodes,
|
||||
|
50
src/scheduler/greedy.jl
Normal file
50
src/scheduler/greedy.jl
Normal file
@ -0,0 +1,50 @@
|
||||
|
||||
"""
|
||||
GreedyScheduler
|
||||
|
||||
A greedy implementation of a scheduler, creating a topological ordering of nodes and naively balancing them onto the different devices.
|
||||
"""
|
||||
struct GreedyScheduler end
|
||||
|
||||
function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine)
|
||||
nodeQueue = PriorityQueue{Node, Int}()
|
||||
|
||||
# use a priority equal to the number of unseen children -> 0 are nodes that can be added
|
||||
for node in get_entry_nodes(graph)
|
||||
enqueue!(nodeQueue, node => 0)
|
||||
end
|
||||
|
||||
schedule = Vector{Node}()
|
||||
sizehint!(schedule, length(graph.nodes))
|
||||
|
||||
# keep an accumulated cost of things scheduled to this device so far
|
||||
deviceAccCost = PriorityQueue{AbstractDevice, Int}()
|
||||
for device in machine.devices
|
||||
enqueue!(deviceAccCost, device => 0)
|
||||
end
|
||||
|
||||
node = nothing
|
||||
while !isempty(nodeQueue)
|
||||
@assert peek(nodeQueue)[2] == 0
|
||||
node = dequeue!(nodeQueue)
|
||||
|
||||
# assign the device with lowest accumulated cost to the node (if it's a compute node)
|
||||
if (isa(node, ComputeTaskNode))
|
||||
lowestDevice = peek(deviceAccCost)[1]
|
||||
node.device = lowestDevice
|
||||
deviceAccCost[lowestDevice] = compute_effort(node.task)
|
||||
end
|
||||
|
||||
push!(schedule, node)
|
||||
for parent in node.parents
|
||||
# reduce the priority of all parents by one
|
||||
if (!haskey(nodeQueue, parent))
|
||||
enqueue!(nodeQueue, parent => length(parent.children) - 1)
|
||||
else
|
||||
nodeQueue[parent] = nodeQueue[parent] - 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return schedule
|
||||
end
|
18
src/scheduler/interface.jl
Normal file
18
src/scheduler/interface.jl
Normal file
@ -0,0 +1,18 @@
|
||||
|
||||
"""
|
||||
Scheduler
|
||||
|
||||
Abstract base type for scheduler implementations. The scheduler is used to assign each node to a device and create a topological ordering of tasks.
|
||||
"""
|
||||
abstract type Scheduler end
|
||||
|
||||
"""
|
||||
schedule_dag(::Scheduler, ::DAG, ::Machine)
|
||||
|
||||
Interface functions that must be implemented for implementations of [`Scheduler`](@ref).
|
||||
|
||||
The function assigns each [`ComputeTaskNode`](@ref) of the [`DAG`](@ref) to one of the devices in the given [`Machine`](@ref) and returns a `Vector{Node}` representing a topological ordering.
|
||||
|
||||
[`DataTaskNode`](@ref)s are not scheduled to devices since they do not compute. Instead, a data node transfers data from the [`AbstractDevice`](@ref) of their child to all [`AbstractDevice`](@ref)s of its parents.
|
||||
"""
|
||||
function schedule_dag end
|
89
src/task/compute.jl
Normal file
89
src/task/compute.jl
Normal file
@ -0,0 +1,89 @@
|
||||
|
||||
"""
|
||||
compute(t::FusedComputeTask, data)
|
||||
|
||||
Compute a [`FusedComputeTask`](@ref). This simply asserts false and should not be called. Fused Compute Tasks generate their expressions directly through the other tasks instead.
|
||||
"""
|
||||
function compute(t::FusedComputeTask, data)
|
||||
@assert false "This is not implemented and should never be called"
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector{String}, outExpr::String)
|
||||
|
||||
Generate code evaluating a [`FusedComputeTask`](@ref) on `inExprs`, providing the output on `outExpr`.
|
||||
`inExprs` should be of the correct types and may be heterogeneous. `outExpr` will be of the type of the output of `T2` of t.
|
||||
"""
|
||||
function get_expression(t::FusedComputeTask, device::AbstractDevice, inExprs::Vector, outExpr)
|
||||
inExprs1 = Vector()
|
||||
for sym in t.t1_inputs
|
||||
push!(inExprs1, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
outExpr1 = gen_access_expr(device, t.t1_output)
|
||||
|
||||
inExprs2 = Vector()
|
||||
for sym in t.t2_inputs
|
||||
push!(inExprs2, gen_access_expr(device, sym))
|
||||
end
|
||||
|
||||
expr1 = get_expression(t.first_task, device, inExprs1, outExpr1)
|
||||
expr2 = get_expression(t.second_task, device, [inExprs2..., outExpr1], outExpr)
|
||||
|
||||
full_expr = Expr(:block, expr1, expr2)
|
||||
|
||||
return full_expr
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::ComputeTaskNode)
|
||||
|
||||
Generate and return code for a given [`ComputeTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::ComputeTaskNode)
|
||||
@assert length(node.children) <= children(node.task) "Node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(node.task))\nNode's children: $(getfield.(node.children, :children))"
|
||||
@assert !ismissing(node.device) "Trying to get expression for an unscheduled ComputeTaskNode\nNode: $(node)"
|
||||
|
||||
inExprs = Vector()
|
||||
for id in getfield.(node.children, :id)
|
||||
push!(inExprs, gen_access_expr(node.device, Symbol(to_var_name(id))))
|
||||
end
|
||||
outExpr = gen_access_expr(node.device, Symbol(to_var_name(node.id)))
|
||||
|
||||
return get_expression(node.task, node.device, inExprs, outExpr)
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression(node::DataTaskNode)
|
||||
|
||||
Generate and return code for a given [`DataTaskNode`](@ref).
|
||||
"""
|
||||
function get_expression(node::DataTaskNode)
|
||||
@assert length(node.children) == 1 "Trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1"
|
||||
|
||||
# TODO: dispatch to device implementations generating the copy commands
|
||||
|
||||
child = node.children[1]
|
||||
inExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(child.id))))
|
||||
outExpr = eval(gen_access_expr(child.device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
end
|
||||
|
||||
"""
|
||||
get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
|
||||
Generate and return code for the initial input reading expression for [`DataTaskNode`](@ref)s with 0 children, i.e., entry nodes.
|
||||
|
||||
See also: [`get_entry_nodes`](@ref)
|
||||
"""
|
||||
function get_init_expression(node::DataTaskNode, device::AbstractDevice)
|
||||
@assert isempty(node.children) "Trying to call get_init_expression on a data task node that is not an entry node."
|
||||
|
||||
inExpr = eval(gen_access_expr(device, Symbol("$(to_var_name(node.id))_in")))
|
||||
outExpr = eval(gen_access_expr(device, Symbol(to_var_name(node.id))))
|
||||
dataTransportExp = Meta.parse("$outExpr = $inExpr")
|
||||
|
||||
return dataTransportExp
|
||||
end
|
@ -3,8 +3,7 @@
|
||||
|
||||
Fallback implementation of the copy of an abstract data task, throwing an error.
|
||||
"""
|
||||
copy(t::AbstractDataTask) =
|
||||
error("Need to implement copying for your data tasks!")
|
||||
copy(t::AbstractDataTask) = error("Need to implement copying for your data tasks!")
|
||||
|
||||
"""
|
||||
copy(t::AbstractComputeTask)
|
||||
@ -12,3 +11,21 @@ copy(t::AbstractDataTask) =
|
||||
Return a copy of the given compute task.
|
||||
"""
|
||||
copy(t::AbstractComputeTask) = typeof(t)()
|
||||
|
||||
"""
|
||||
copy(t::FusedComputeTask)
|
||||
|
||||
Return a copy of th egiven [`FusedComputeTask`](@ref).
|
||||
"""
|
||||
function copy(t::FusedComputeTask{T1, T2}) where {T1, T2}
|
||||
return FusedComputeTask{T1, T2}(
|
||||
copy(t.first_task),
|
||||
copy(t.second_task),
|
||||
copy(t.t1_inputs),
|
||||
t.t1_output,
|
||||
copy(t.t2_inputs),
|
||||
)
|
||||
end
|
||||
|
||||
FusedComputeTask{T1, T2}(t1_inputs::Vector{String}, t1_output::String, t2_inputs::Vector{String}) where {T1, T2} =
|
||||
FusedComputeTask{T1, T2}(T1(), T2(), t1_inputs, t1_output, t2_inputs)
|
||||
|
@ -4,6 +4,5 @@
|
||||
Print a string representation of the fused compute task to io.
|
||||
"""
|
||||
function show(io::IO, t::FusedComputeTask)
|
||||
(T1, T2) = get_types(t)
|
||||
return print(io, "ComputeFuse(", T1(), ", ", T2(), ")")
|
||||
return print(io, "ComputeFuse($(t.first_task), $(t.second_task))")
|
||||
end
|
||||
|
@ -71,8 +71,7 @@ data(t::AbstractComputeTask) = 0
|
||||
Return the compute effort of a fused compute task.
|
||||
"""
|
||||
function compute_effort(t::FusedComputeTask)
|
||||
(T1, T2) = collect(typeof(t).parameters)
|
||||
return compute_effort(T1()) + compute_effort(T2())
|
||||
return compute_effort(t.first_task) + compute_effort(t.second_task)
|
||||
end
|
||||
|
||||
"""
|
||||
@ -81,30 +80,3 @@ end
|
||||
Return a tuple of a the fused compute task's components' types.
|
||||
"""
|
||||
get_types(::FusedComputeTask{T1, T2}) where {T1, T2} = (T1, T2)
|
||||
|
||||
"""
|
||||
get_expression(t::AbstractTask)
|
||||
|
||||
Return an expression evaluating the given task on the :dataIn symbol
|
||||
"""
|
||||
function get_expression(t::AbstractTask)
|
||||
return quote
|
||||
dataOut = compute($t, dataIn)
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
get_expression()
|
||||
"""
|
||||
function get_expression(
|
||||
t::FusedComputeTask,
|
||||
inSymbol::Symbol,
|
||||
outSymbol::Symbol,
|
||||
)
|
||||
#TODO
|
||||
computeExp = quote
|
||||
$outSymbol = compute($t, $inSymbol)
|
||||
end
|
||||
|
||||
return computeExp
|
||||
end
|
||||
|
@ -26,5 +26,13 @@ A fused compute task made up of the computation of first `T1` and then `T2`.
|
||||
|
||||
Also see: [`get_types`](@ref).
|
||||
"""
|
||||
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <:
|
||||
AbstractComputeTask end
|
||||
struct FusedComputeTask{T1 <: AbstractComputeTask, T2 <: AbstractComputeTask} <: AbstractComputeTask
|
||||
first_task::T1
|
||||
second_task::T2
|
||||
# the names of the inputs for T1
|
||||
t1_inputs::Vector{Symbol}
|
||||
# output name of T1
|
||||
t1_output::Symbol
|
||||
# t2_inputs doesn't include the output of t1, that's implicit
|
||||
t2_inputs::Vector{Symbol}
|
||||
end
|
||||
|
@ -87,3 +87,19 @@ Return the memory footprint of the node in Byte. Used in [`mem(graph::DAG)`](@re
|
||||
function mem(node::Node)
|
||||
return Base.summarysize(node, exclude = Union{Node, Operation})
|
||||
end
|
||||
|
||||
"""
|
||||
unroll_symbol_vector(vec::Vector{Symbol})
|
||||
|
||||
Return the given vector as single String without quotation marks or brackets.
|
||||
"""
|
||||
function unroll_symbol_vector(vec::Vector)
|
||||
result = ""
|
||||
for s in vec
|
||||
if (result != "")
|
||||
result *= ", "
|
||||
end
|
||||
result *= "$s"
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
Reference in New Issue
Block a user