Cost Estimation interface (#14)
See issue #13 Reviewed-on: Rubydragon/MetagraphOptimization.jl#14 Co-authored-by: Anton Reinhard <anton.reinhard@proton.me> Co-committed-by: Anton Reinhard <anton.reinhard@proton.me>
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
[deps]
|
||||
AccurateArithmetic = "22286c92-06ac-501d-9306-4abd417d9753"
|
||||
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
|
||||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
@ -6,6 +6,8 @@ using Test
|
||||
include("unit_tests_tasks.jl")
|
||||
include("unit_tests_nodes.jl")
|
||||
include("unit_tests_properties.jl")
|
||||
include("unit_tests_estimator.jl")
|
||||
include("unit_tests_abcmodel.jl")
|
||||
include("node_reduction.jl")
|
||||
include("unit_tests_graph.jl")
|
||||
include("unit_tests_execution.jl")
|
||||
|
26
test/unit_tests_abcmodel.jl
Normal file
26
test/unit_tests_abcmodel.jl
Normal file
@ -0,0 +1,26 @@
|
||||
using MetagraphOptimization
|
||||
using QEDbase
|
||||
|
||||
import MetagraphOptimization.interaction_result
|
||||
|
||||
def_momentum = SFourMomentum(1.0, 0.0, 0.0, 0.0)
|
||||
|
||||
testparticleTypes = [ParticleA, ParticleB, ParticleC]
|
||||
testparticles = [ParticleA(def_momentum), ParticleB(def_momentum), ParticleC(def_momentum)]
|
||||
|
||||
@testset "Unit Tests ABC-Model" begin
|
||||
@testset "Interaction Result" begin
|
||||
for p1 in testparticleTypes, p2 in testparticleTypes
|
||||
if (p1 == p2)
|
||||
@test_throws AssertionError interaction_result(p1, p2)
|
||||
else
|
||||
@test interaction_result(p1, p2) == setdiff(testparticleTypes, [p1, p2])[1]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Vertex" begin
|
||||
@test isapprox(MetagraphOptimization.vertex(), 1 / 137.0)
|
||||
end
|
||||
end
|
||||
println("ABC-Model Unit Tests Complete!")
|
99
test/unit_tests_estimator.jl
Normal file
99
test/unit_tests_estimator.jl
Normal file
@ -0,0 +1,99 @@
|
||||
function test_op_specific(estimator, graph, nf::NodeFusion)
|
||||
estimate = operation_effect(estimator, graph, nf)
|
||||
data_reduce = data(nf.input[2].task)
|
||||
|
||||
@test isapprox(estimate.data, -data_reduce)
|
||||
@test isapprox(estimate.computeEffort, 0; atol = eps(Float64))
|
||||
@test isapprox(estimate.computeIntensity, 0; atol = eps(Float64))
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
function test_op_specific(estimator, graph, nr::NodeReduction)
|
||||
estimate = operation_effect(estimator, graph, nr)
|
||||
|
||||
data_reduce = data(nr.input[1].task) * (length(nr.input) - 1)
|
||||
compute_effort_reduce = compute_effort(nr.input[1].task) * (length(nr.input) - 1)
|
||||
|
||||
@test isapprox(estimate.data, -data_reduce; atol = eps(Float64))
|
||||
@test isapprox(estimate.computeEffort, -compute_effort_reduce)
|
||||
@test isapprox(estimate.computeIntensity, compute_effort_reduce / data_reduce)
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
function test_op_specific(estimator, graph, ns::NodeSplit)
|
||||
estimate = operation_effect(estimator, graph, ns)
|
||||
|
||||
copies = length(ns.input.parents) - 1
|
||||
|
||||
data_increase = data(ns.input.task) * copies
|
||||
compute_effort_increase = compute_effort(ns.input.task) * copies
|
||||
|
||||
@test isapprox(estimate.data, data_increase; atol = eps(Float64))
|
||||
@test isapprox(estimate.computeEffort, compute_effort_increase)
|
||||
@test isapprox(estimate.computeIntensity, compute_effort_increase / data_increase)
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
function test_op(estimator, graph, op)
|
||||
#=
|
||||
See issue #16
|
||||
|
||||
estimate_before = graph_cost(estimator, graph)
|
||||
|
||||
estimate = operation_effect(estimator, graph, op)
|
||||
|
||||
push_operation!(graph, op)
|
||||
estimate_after_apply = graph_cost(estimator, graph)
|
||||
reset_graph!(graph)
|
||||
|
||||
@test isapprox((estimate_before + estimate).data, estimate_after_apply.data)
|
||||
@test isapprox((estimate_before + estimate).computeEffort, estimate_after_apply.computeEffort)
|
||||
@test isapprox((estimate_before + estimate).computeIntensity, estimate_after_apply.computeIntensity)
|
||||
=#
|
||||
|
||||
test_op_specific(estimator, graph, op)
|
||||
return nothing
|
||||
end
|
||||
|
||||
@testset "Unit Tests Estimator" begin
|
||||
@testset "Global Metric Estimator" for (graph_string, exp_data, exp_computeEffort) in
|
||||
zip(["AB->AB", "AB->ABBB"], [976, 10944], [53, 1075])
|
||||
estimator = GlobalMetricEstimator()
|
||||
|
||||
@test cost_type(estimator) == CDCost
|
||||
|
||||
graph = parse_dag(joinpath(@__DIR__, "..", "input", "$(graph_string).txt"), ABCModel())
|
||||
|
||||
@testset "Graph Cost" begin
|
||||
estimate = graph_cost(estimator, graph)
|
||||
|
||||
@test estimate.data == exp_data
|
||||
@test estimate.computeEffort == exp_computeEffort
|
||||
@test isapprox(estimate.computeIntensity, exp_computeEffort / exp_data)
|
||||
end
|
||||
|
||||
@testset "Operation Cost" begin
|
||||
ops = get_operations(graph)
|
||||
nfs = copy(ops.nodeFusions)
|
||||
nrs = copy(ops.nodeReductions)
|
||||
nss = copy(ops.nodeSplits)
|
||||
|
||||
println(
|
||||
"Testing $(length(ops.nodeFusions))xNF, $(length(ops.nodeReductions))xNR, $(length(ops.nodeSplits))xNS",
|
||||
)
|
||||
for nf in nfs
|
||||
test_op(estimator, graph, nf)
|
||||
end
|
||||
for nr in nrs
|
||||
test_op(estimator, graph, nr)
|
||||
end
|
||||
for ns in nss
|
||||
test_op(estimator, graph, ns)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
println("Estimator Unit Tests Complete!")
|
@ -1,9 +1,51 @@
|
||||
import MetagraphOptimization.ABCParticle
|
||||
import MetagraphOptimization.interaction_result
|
||||
|
||||
using QEDbase
|
||||
using AccurateArithmetic
|
||||
|
||||
include("../examples/profiling_utilities.jl")
|
||||
|
||||
const RTOL = sqrt(eps(Float64))
|
||||
|
||||
function check_particle_reverse_moment(p1::SFourMomentum, p2::SFourMomentum)
|
||||
@test isapprox(abs(p1.E), abs(p2.E))
|
||||
@test isapprox(p1.px, -p2.px)
|
||||
@test isapprox(p1.py, -p2.py)
|
||||
@test isapprox(p1.pz, -p2.pz)
|
||||
return nothing
|
||||
end
|
||||
|
||||
function ground_truth_graph_result(input::ABCProcessInput)
|
||||
# formula for one diagram:
|
||||
# u_Bp * iλ * u_Ap * S_C * u_B * iλ * u_A
|
||||
# for the second diagram:
|
||||
# u_B * iλ * u_Ap * S_C * u_Bp * iλ * u_Ap
|
||||
# the "u"s are all 1, we ignore the i, λ is 1/137.
|
||||
|
||||
constant = (1 / 137.0)^2
|
||||
|
||||
# calculate particle C in diagram 1
|
||||
diagram1_C = ParticleC(input.inParticles[1].momentum + input.inParticles[2].momentum)
|
||||
diagram2_C = ParticleC(input.inParticles[1].momentum + input.outParticles[2].momentum)
|
||||
|
||||
diagram1_Cp = ParticleC(input.outParticles[1].momentum + input.outParticles[2].momentum)
|
||||
diagram2_Cp = ParticleC(input.outParticles[1].momentum + input.inParticles[2].momentum)
|
||||
|
||||
check_particle_reverse_moment(diagram1_Cp.momentum, diagram1_C.momentum)
|
||||
check_particle_reverse_moment(diagram2_Cp.momentum, diagram2_C.momentum)
|
||||
@test isapprox(getMass2(diagram1_C.momentum), getMass2(diagram1_Cp.momentum))
|
||||
@test isapprox(getMass2(diagram2_C.momentum), getMass2(diagram2_Cp.momentum))
|
||||
|
||||
inner1 = MetagraphOptimization.inner_edge(diagram1_C)
|
||||
inner2 = MetagraphOptimization.inner_edge(diagram2_C)
|
||||
|
||||
diagram1_result = inner1 * constant
|
||||
diagram2_result = inner2 * constant
|
||||
|
||||
return sum_kbn([diagram1_result, diagram2_result])
|
||||
end
|
||||
|
||||
@testset "Unit Tests Execution" begin
|
||||
machine = get_machine_info()
|
||||
|
||||
@ -23,29 +65,29 @@ include("../examples/profiling_utilities.jl")
|
||||
ParticleB(SFourMomentum(0.823648, 0.835061, 0.474802, -0.277915)),
|
||||
],
|
||||
)
|
||||
expected_result = 0.00013916495566048735
|
||||
expected_result = ground_truth_graph_result(particles_2_2)
|
||||
|
||||
@testset "AB->AB no optimization" begin
|
||||
for _ in 1:10 # test in a loop because graph layout should not change the result
|
||||
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
|
||||
|
||||
# graph should be fully scheduled after being executed
|
||||
@test is_scheduled(graph)
|
||||
|
||||
func = get_compute_function(graph, process_2_2, machine)
|
||||
@test isapprox(func(particles_2_2), expected_result; rtol = 0.001)
|
||||
@test isapprox(func(particles_2_2), expected_result; rtol = RTOL)
|
||||
end
|
||||
end
|
||||
|
||||
@testset "AB->AB after random walk" begin
|
||||
for i in 1:1000
|
||||
for i in 1:200
|
||||
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->AB.txt"), ABCModel())
|
||||
random_walk!(graph, 50)
|
||||
|
||||
@test is_valid(graph)
|
||||
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
|
||||
|
||||
# graph should be fully scheduled after being executed
|
||||
@test is_scheduled(graph)
|
||||
@ -63,20 +105,20 @@ include("../examples/profiling_utilities.jl")
|
||||
@testset "AB->ABBB no optimization" begin
|
||||
for _ in 1:5 # test in a loop because graph layout should not change the result
|
||||
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
|
||||
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
|
||||
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
|
||||
|
||||
func = get_compute_function(graph, process_2_4, machine)
|
||||
@test isapprox(func(particles_2_4), expected_result; rtol = 0.001)
|
||||
@test isapprox(func(particles_2_4), expected_result; rtol = RTOL)
|
||||
end
|
||||
end
|
||||
|
||||
@testset "AB->ABBB after random walk" begin
|
||||
for i in 1:200
|
||||
for i in 1:50
|
||||
graph = parse_dag(joinpath(@__DIR__, "..", "input", "AB->ABBB.txt"), ABCModel())
|
||||
random_walk!(graph, 100)
|
||||
@test is_valid(graph)
|
||||
|
||||
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = 0.001)
|
||||
@test isapprox(execute(graph, process_2_4, machine, particles_2_4), expected_result; rtol = RTOL)
|
||||
end
|
||||
end
|
||||
|
||||
@ -105,8 +147,8 @@ include("../examples/profiling_utilities.jl")
|
||||
|
||||
# try execute
|
||||
@test is_valid(graph)
|
||||
expected_result = 0.00013916495566048735
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
|
||||
expected_result = ground_truth_graph_result(particles_2_2)
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
|
||||
end
|
||||
|
||||
|
||||
@ -135,8 +177,8 @@ include("../examples/profiling_utilities.jl")
|
||||
|
||||
# try execute
|
||||
@test is_valid(graph)
|
||||
expected_result = 0.00013916495566048735
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
|
||||
expected_result = ground_truth_graph_result(particles_2_2)
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
|
||||
end
|
||||
|
||||
@testset "AB->AB fusion edge case" for _ in 1:20
|
||||
@ -169,8 +211,8 @@ include("../examples/profiling_utilities.jl")
|
||||
|
||||
# try execute
|
||||
@test is_valid(graph)
|
||||
expected_result = 0.00013916495566048735
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = 0.001)
|
||||
expected_result = ground_truth_graph_result(particles_2_2)
|
||||
@test isapprox(execute(graph, process_2_2, machine, particles_2_2), expected_result; rtol = RTOL)
|
||||
end
|
||||
|
||||
end
|
||||
|
Reference in New Issue
Block a user