metagraphoptimization.jl/src/task_functions.jl

54 lines
1.4 KiB
Julia
Raw Normal View History

2023-05-25 17:20:16 +02:00
function compute(t::AbstractTask; data...)
error("Need to implement compute()")
end
function compute_effort(t::AbstractTask)
# default implementation using compute
error("Need to implement compute_effort()")
end
function data(t::AbstractTask)
error("Need to implement data()")
end
compute_effort(t::AbstractDataTask) = 0
compute(t::AbstractDataTask; data...) = data
data(t::AbstractDataTask) = getfield(t, :data)
data(t::AbstractComputeTask) = 0
2023-05-26 17:07:08 +02:00
function compute_effort(t::FusedComputeTask)
(T1, T2) = collect(typeof(t).parameters)
return compute_effort(T1()) + compute_effort(T2())
end
2023-05-25 17:20:16 +02:00
# actual compute functions for the tasks can stay undefined for now
# compute(t::ComputeTaskU, data::Any) = mycomputation(data)
function compute_intensity(t::AbstractTask)::UInt64
2023-05-25 17:20:16 +02:00
if data(t) == 0
return typemax(UInt64)
2023-05-25 17:20:16 +02:00
end
return compute_effort(t) / data(t)
end
function show(io::IO, t::FusedComputeTask)
2023-05-30 19:10:44 +02:00
(T1, T2) = get_types(t)
print(io, "ComputeFuse(", T1(), ", ", T2(), ")")
end
2023-05-25 17:20:16 +02:00
function ==(t1::AbstractTask, t2::AbstractTask)
return false
end
function ==(t1::AbstractComputeTask, t2::AbstractComputeTask)
return typeof(t1) == typeof(t2)
end
function ==(t1::AbstractDataTask, t2::AbstractDataTask)
return data(t1) == data(t2)
end
2023-06-27 20:05:27 +02:00
2023-06-29 13:57:45 +02:00
copy(t::AbstractDataTask) = error("Need to implement copying for your data tasks!")
2023-06-27 20:05:27 +02:00
copy(t::AbstractComputeTask) = typeof(t)()