Add virtual_particles implementation

This commit is contained in:
AntonReinhard 2024-07-09 16:47:47 +02:00
parent f51a97e59b
commit e8bc26b0c0
5 changed files with 201 additions and 21 deletions

View File

@ -5,6 +5,8 @@ version = "0.1.0"
[deps]
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
QEDbase = "10e22c08-3ccb-4172-bfcf-7d7aa3d04d93"
QEDcore = "35dc0263-cb5f-4c33-a114-1d7f54ab753e"
QEDprocesses = "46de9c38-1bb3-4547-a1ec-da24d767fdad"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"

View File

@ -1,8 +1,9 @@
module FeynmanDiagramGenerator
using QEDbase
using QEDcore
using QEDprocesses
using Reexport
@reexport using QEDbase
@reexport using QEDcore
@reexport using QEDprocesses
include("QEDprocesses_patch.jl")
@ -14,6 +15,7 @@ export GenericQEDProcess, isphysical
export AbstractTreeLevelFeynmanDiagram, FeynmanVertex, FeynmanDiagram
export external_particles, virtual_particles, process, vertices
export VirtualParticle
export Forest

View File

@ -5,3 +5,26 @@
) where {DIR<:QEDbase.ParticleDirection,PT<:QEDbase.AbstractParticleType}
return count(x -> x isa PT, particles(proc_def, dir))
end
"""
number_particles(proc_def::AbstractProcessDefinition, dir::ParticleDirection, species::AbstractParticleType)
Return the number of particles of the given direction and species in the given process definition.
"""
@inline function QEDbase.number_particles(
proc_def::AbstractProcessDefinition, dir::DIR, species::PT
) where {DIR<:ParticleDirection,PT<:AbstractParticleType}
return count(x -> x isa PT, particles(proc_def, dir))
end
"""
number_particles(proc_def::AbstractProcessDefinition, particle::AbstractParticleStateful)
Return the number of particles of the given particle's direction and species in the given process definition.
"""
@inline function QEDbase.number_particles(
proc_def::AbstractProcessDefinition, ps::AbstractParticleStateful
)
return number_particles(proc_def, particle_direction(ps), particle_species(ps))
end

View File

@ -1,3 +1,4 @@
using DataStructures
using Combinatorics
using QEDprocesses
using QEDbase
@ -80,22 +81,115 @@ end
import Base: +
# "addition" of the bool tuples
# realistically, there should never be "colliding" 1s. if there are there is probably an error and this should be asserted
function +(a::Tuple{NTuple{I,Bool},NTuple{O,Bool}}, b::Tuple{NTuple{I,Bool},NTuple{O,Bool}}) where {I,O}
# realistically, there should never be "colliding" 1s. if there are there is probably an error and this should be asserted
#= for (i, j) in zip(a[1], b[1]) @assert !(i && j) end
for (i, j) in zip(a[2], b[2]) @assert !(i && j) end =#
return (ntuple(i -> a[1][i] || b[1][i], I), ntuple(i -> a[2][i] || b[2][i], O))
end
# normalize the representation
function normalize(virtual_particle::VirtualParticle{P,S,IN_T,OUT_T}) where {P,S,IN_T,OUT_T}
I = length(virtual_particle.in_particle_contributions)
O = length(virtual_particle.out_particle_contributions)
data = (virtual_particle.in_particle_contributions, virtual_particle.out_particle_contributions)
s = sum(data[1]) + sum(data[2])
if s > (I + O) / 2
return VirtualParticle(virtual_particle.proc, virtual_particle.species, ntuple(x -> !data[1][x], I), ntuple(x -> !data[2][x], O))
elseif s == (I + O) / 2 && data[1][1] == false
return VirtualParticle(virtual_particle.proc, virtual_particle.species, ntuple(x -> !data[1][x], I), ntuple(x -> !data[2][x], O))
else
return virtual_particle
end
end
function _momentum_contribution(proc::AbstractProcessDefinition, dir::ParticleDirection, species::AbstractParticleType, index::Int)
# get index of n-th "dir species" particle in proc
particles_seen = 0
c = 0
for p in particles(proc, dir)
c += 1
if p == species
particles_seen += 1
end
if particles_seen == index
return (ntuple(x -> is_incoming(dir) && x == c, number_incoming_particles(proc)), ntuple(x -> is_outgoing(dir) && x == c, number_outgoing_particles(proc)))
end
end
end
function _momentum_contribution(proc::AbstractProcessDefinition, diagram::FeynmanDiagram{N,E,U,T,M,FM}, n::Int) where {N,E,U,T,M,FM}
if (n > 0 && n <= E)
# left electron n
electron_n = n
if electron_n > number_particles(proc, Incoming(), Electron())
# outgoing positron
return _momentum_contribution(proc, Outgoing(), Positron(), electron_n - number_particles(proc, Incoming(), Electron()))
else
# incoming electron
return _momentum_contribution(proc, Incoming(), Electron(), electron_n)
end
elseif (n > E && n <= E + U)
# left muon n - E
muon_n = n - E
throw(InvalidInputError("unimplemented for muons"))
elseif (n > E + U && n <= E + U + T)
# left tauon n - E - U
tauon_n = n - E - U
throw(InvalidInputError("unimplemented for tauons"))
elseif (n > N && n <= N + M)
# photon
photon_n = n - N
if photon_n > number_particles(proc, Incoming(), Photon())
# outgoing photon
return _momentum_contribution(proc, Outgoing(), Photon(), photon_n - number_particles(proc, Incoming(), Photon()))
else
# incoming photon
return _momentum_contribution(proc, Incoming(), Photon(), photon_n)
end
elseif (n > N + M && n <= N + M + E)
# right electron
electron_n = n - N - M
if electron_n > number_particles(proc, Outgoing(), Electron())
# incoming positron
return _momentum_contribution(proc, Incoming(), Positron(), electron_n - number_particles(proc, Outgoing(), Electron()))
else
# outgoing electron
return _momentum_contribution(proc, Outgoing(), Electron(), electron_n)
end
elseif (n > N + M + E && n <= N + M + E + U)
# right muon
muon_n = n - N - M - E
throw(InvalidInputError("unimplemented for muons"))
elseif (n > N + M + E + U && n <= N + M + E + U + T)
# right tauon
tauon_n = n - N - M - E - U
throw(InvalidInputError("unimplemented for tauons"))
else
# error
throw(InvalidInputError("invalid index given for _momentum_contribution()"))
end
end
function virtual_particles(proc::QEDbase.AbstractProcessDefinition, diagram::FeynmanDiagram{N,E,U,T,M,FM}) where {N,E,U,T,M,FM}
I = number_incoming_particles(proc)
O = number_outgoing_particles(proc)
fermion_lines = PriorityQueue{Int64,Int64}()
# map of all known particles' momentum composition
known_particles = Dict{Int64,Tuple{NTuple{I,Bool},NTuple{O,Bool}}}()
# count number of internal photons in each fermion line and make a priority queue for fermion line => number of internal photons
for i in 1:N
count = 0
for p in 1:length(diagram.diagram_structure, i)
if diagram.diagram_structure[i, p] <= N
# internal photon
count += 1
end
end
enqueue!(fermion_lines, i => count)
end
result = Vector()
# 1: insert all the external ones (won't be returned), they all have exactly one 1 in their composition
# TODO
internal_photon_contributions = Dict()
# 2: Loop:
# while there are incomplete fermion lines:
@ -103,16 +197,66 @@ function virtual_particles(proc::QEDbase.AbstractProcessDefinition, diagram::Fey
# walk the fermion line, assign each virtual particle the momentum composition of the previous (or initial fermion if start) "+" the connected particle
# when/if the unknown particle is encountered, start walking from the other side
# when they meet at the unknown particle, assign the unknown particle Photon and left side - right side momentum contribution
# TODO
while !isempty(fermion_lines)
current_line = dequeue!(fermion_lines)
# 3: minimalize the contributions, i.e., if the number of contributing particles > half of all particles, invert both vectors
# if it's exactly half of all particles, think of some consistent way to break the symmetry, e.g. swap if the first particle is not contributing
# TODO
local unknown_photon_momentum = nothing
# walk line from the *left* (everything looks like an electron/muon/tauon)
species = current_line <= E ? Electron() : throw(InvalidInputError("muon/taun not implemented yet"))
cumulative_mom = _momentum_contribution(proc, diagram, current_line)
# 4: convert the known_particles Dict to an NTuple and remove the external particles (those with only 1 contributing momentum)
# TODO
for i in 1:length(diagram.diagram_structure, current_line)
binding_particle = diagram.diagram_structure[current_line, i]
if (binding_particle <= N) # binding_particle is an internal photon
if haskey(internal_photon_contributions, binding_particle) # if the binding particle is known
cumulative_mom += internal_photon_contributions[binding_particle]
else # if the binding particle is unknown
# save so far momentum and break, add the right side momentum later
unknown_photon_momentum = cumulative_mom
break
end
else # binding_particle is an external photon
cumulative_mom += _momentum_contribution(proc, diagram, binding_particle)
end
push!(result, VirtualParticle(proc, species, cumulative_mom...))
end
return NTuple{?,VirtualParticle}()
if isnothing(unknown_photon_momentum)
# case where we're done (only one fermion line or last fermion line)
# fermion_lines always has to be empty at this point, otherwise the tree wouldn't be connected
@assert isempty(fermion_lines)
continue
end
# walk line from the *right* (everything looks like a positron/antimuon/antitauon)
species = current_line <= E ? Positron() : throw(InvalidInputError("muon/taun not implemented yet"))
# find right side of the line
right_line = diagram.electron_permutation[current_line]
cumulative_mom = _momentum_contribution(proc, diagram, right_line)
for i in length(diagram.diagram_structure, current_line):-1:1 # iterate from the right
binding_particle = diagram.diagram_structure[current_line, i]
if (binding_particle <= N) # binding_particle is an internal photon
if haskey(internal_photon_contributions, binding_particle) # if the binding particle is known, proceed as above
cumulative_mom += internal_photon_contributions[binding_particle]
else # if the binding particle is unknown
# we have arrived at the "middle" of the line
# this line will be the unknown particle for the other lines
internal_photon_contributions[current_line] = cumulative_mom + unknown_photon_momentum
# now we know that the fermion line that binding_particle binds to on the other end has one fewer unknown internal photons
fermion_lines[binding_particle] -= 1
# add the internal photon virtual particle
push!(result, VirtualParticle(proc, Photon(), (cumulative_mom + unknown_photon_momentum)...))
break
end
else # binding_particle is an external photon
cumulative_mom += _momentum_contribution(proc, diagram, binding_particle)
end
push!(result, VirtualParticle(proc, species, cumulative_mom...))
end
end
return ntuple(x -> normalize(result[x]), length(result) - 1)
end
function vertices(diagram::FeynmanDiagram{N,E,U,T,M,FM}) where {N,E,U,T,M,FM}
@ -271,11 +415,15 @@ function feynman_diagrams(in_particles::Tuple, out_particles::Tuple)
# TODO: do this the same way as for e when muons and tauons are a part of QED.jl
u = 0
t = 0
n = e + u + t
# the numbers in the feynman diagram go as follows:
# left electrons -> left muons -> left tauons -> left photons -> right photons -> right electrons -> right muons -> right tauons
# a "left" fermion is simply an incoming fermion or outgoing antifermion of the type, while a "left" photon is an incoming photon, and the reverse for the right ones
f_iter = _feynman_structures(e + u + t, m)
e_perms = collect(permutations(Int[1:e;]))
u_perms = collect(permutations(Int[e+1:e+u;]))
t_perms = collect(permutations(Int[e+u+1:e+u+t;]))
e_perms = collect(permutations(Int[n+m+1:n+m+e;]))
u_perms = collect(permutations(Int[n+m+e+1:n+m+e+u;]))
t_perms = collect(permutations(Int[n+m+e+u+1:n+m+e+u+t;]))
first_photon_structure, _ = iterate(f_iter)
return FeynmanDiagramIterator(Val(e), e_perms, 1, Val(u), u_perms, 1, Val(t), t_perms, 1, Val(m), f_iter, first_photon_structure)

View File

@ -21,3 +21,8 @@ function Base.getindex(m::FlatMatrix{T,N,M}, x::Int, y::Int) where {T,N,M}
x == M ? m.indices[x] + y <= N : m.indices[x] + y <= m.indices[x+1] || throw(InvalidInputError("invalid indices ($x, $y) for flat matrix $m"))
return m.values[m.indices[x]+y]
end
function Base.length(m::FlatMatrix{T,N,M}, x::Int) where {T,N,M}
(x <= M && x > 0) || throw(InvalidInputError("invalid index $x for flat matrix $m"))
return x == M ? N - m.indices[x] : m.indices[x+1] - m.indices[x]
end